Table of Contents

Introduction
Page 1

Overview
1-2

List of Disorders Included in Illinois Screening Panel
3

Newborn Screening Program Contact Information
4

Practitioner’s Newborn Screening Responsibilities
Pages 5-7

- **Specimen Collection**
 5-6

- **Newborn Screening Fee**
 6

- **Repeat Specimens, Diagnostic Testing and Referrals**
 6

- **Refusal of Newborn Screening**
 6

- **Infants Born Outside State of Mother’s Residence**
 7

Collection of Newborn Screening Specimens
Pages 7-11

- **Filter Paper Collection Form**
 7-8

- **Timing of Specimen Collection**
 8

 - **Exceptions**
 8-9

 - **Special Considerations**
 8-9

 - **Infants Born Outside of Hospital/Medical Facilities**
 8-9

 - **Premature and Sick Infants**
 8-9

 - **Infants Receiving Special Feedings**
 8-9

 - **Infants Receiving Antibiotics**
 8-9

 - **Transfusions**
 8-9

- **Tips for Specimen Collection**
 9-10

 - **Capillary Tubes and EDTA**
 9-10

Collection of Repeat Specimens
10

Handling and Submission of Specimens
Page 11

- **Submitting Specimens**
 11

- **Timeliness**
 11

Reporting of Screening Results
Page 12-13

- **Normal Results**
 12

- **Abnormal Results**
 12

 - **Presumptive Positive Abnormal Results**
 12

 - **Suspect Abnormal Results**
 12

- **Unsatisfactory Specimens**
 12-13

Referrals to Pediatric Medical Specialists and Other Agencies
Page 13-14

- **Pediatric Medical Specialists**
 13

- **Services for Infants with Sickle Cell Disease/Other Hemoglobinopathies**
 13

- **University of Illinois Division of Specialized Care for Children (DSCC)**
 14

- **Local Public Health Departments**
 14
Newborn Screening Disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid/Urea Cycle Disorders</td>
<td>15-17</td>
</tr>
<tr>
<td>Biotinidase Deficiency</td>
<td>18-19</td>
</tr>
<tr>
<td>Congenital Adrenal Hyperplasia</td>
<td>20-22</td>
</tr>
<tr>
<td>Congenital Hypothyroidism</td>
<td>23-24</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>25-26</td>
</tr>
<tr>
<td>Fatty Acid Oxidation Disorders</td>
<td>27-30</td>
</tr>
<tr>
<td>Galactosemia</td>
<td>31-32</td>
</tr>
<tr>
<td>Organic Acid Disorders</td>
<td>33-35</td>
</tr>
<tr>
<td>Phenylketonuria (Also see Amino Acid Disorders)</td>
<td>36-37</td>
</tr>
<tr>
<td>Sickling Hemoglobinopathies (FS, FSC, FSa)</td>
<td>38-40</td>
</tr>
<tr>
<td>Other Hemoglobin Disease Conditions (FC, FD, FE, FNA) and Carrier States (Traits)</td>
<td>41-42</td>
</tr>
<tr>
<td>Lysosomal Storage Diseases</td>
<td>43-45</td>
</tr>
</tbody>
</table>

Appendices

- Filter Paper Collection Form | Appendix A
- Sample Laboratory Mailer Report | Appendix B
- Sample Newborn Screening Follow-up Abnormal Results Report | Appendix C
- Pediatric Medical Specialists | Appendix D
- Local Public Health Department Contacts | Appendix E
- Tandem Mass Spectrometry - Acylcarnitine/Amino Acid Analytes | Appendix F
Introduction

Newborn screening is a public health activity aimed at early identification of newborns affected with certain genetic and/or metabolic conditions. Early diagnosis and treatment of these conditions has been shown in many cases to reduce morbidity, premature death, mental retardation and other developmental disabilities. Newborn screening is recognized as one of the most successful recent public health accomplishments, and was the first population-based genetic screening program to become an integral component of public health practice.

While newborn screening disorders are individually rare, collectively the incidence of these disorders is around one in 500 births. In Illinois, each year around 350-400 babies are diagnosed with a condition identified by newborn screening. Newborn screening affects all health care practitioners who work with children and their families. During their practice of medicine, most pediatric and family medicine health professionals will receive a notice that a child in their care has a serious abnormal newborn screen, or has been diagnosed with a newborn screening disorder.

Health care practitioners are vital links within an effective newborn screening system, a system that includes hospitals, the state newborn screening laboratory and follow-up program, parents, health care providers, medical specialists and community service agencies. Health care providers serve as the front line in assuring that all newborns receive adequate screenings and when necessary, appropriate follow-up services within a medical home.

The Illinois Department of Public Health (Department) Newborn Screening Program developed this manual for health care professionals as a reference guide to newborn screening in Illinois. This resource provides protocols for specimen collection, laboratory testing, follow-up services, and the Department’s reporting of both normal and abnormal screening results. Information about the disorders included in the current newborn screening test panel also is provided. This manual is intended to provide background information and general guidance on issues related to newborn screening, but does not replace the case specific medical advice available through consult with pediatric medical specialists, including those who may be contacted at the medical centers listed in the manual Appendix.

Overview

The Newborn Metabolic Screening Act (410 ILCS 240/) mandates newborn screening for all infants born in Illinois. This act authorizes the Illinois Department of Public Health to promulgate administrative rules for newborn screening (Title 77: Public Health, Chapter 1: Department of Public Health; Subchapter i: Maternal Child Health; Part 661 Newborn Metabolic Screening and Treatment Code). The Newborn Metabolic Screening Act and the newborn screening administrative rules may be viewed at the Department’s Web site, www.idph.state.il.us.

All Illinois newborn infants are mandated to have a blood sample collected on the special filter paper specimen cards supplied by the Illinois Department of Public Health. The only valid exception is parental refusal based on religious beliefs and practices; in which case, a written refusal must be signed by the parents and documented in the infant’s medical record.
Newborn screening blood spot specimens should be collected as soon as possible after the first 24 hours of life. If the baby is to be discharged from the birth center prior to 24 hours of age, the specimen should be collected before discharge. After drying, the specimen cards should be sent by courier to the Department’s Newborn Screening Laboratory in Chicago for testing. When testing is completed, a report of all test results is issued by the Department’s Newborn Screening Laboratory to the specimen submitter (usually the birth center). Birth centers are expected place the original screening report in the infant’s medical record and to relay a copy of the results to the baby’s primary care provider.

In addition to this laboratory report, abnormal, unsatisfactory and invalid test results are reported by the Newborn Screening Follow-up Program to the physician of record, the physician whose name appears on the specimen card. In some cases, hospitals may authorize reporting of results to a specified hospital contact person. The physician of record or the birthing hospital newborn screening contact person is expected to inform the mother, and should the baby have a new primary care provider, the new physician, of the abnormal test results and to facilitate any recommended follow-up activities. Necessary follow-up may include evaluation of the baby’s medical condition and collection of a repeat newborn screening specimen or referral to a pediatric medical specialist for diagnostic testing. If the mother cannot be contacted, the assistance of the birth hospital and/or the local public health department may be needed to help locate the family. The Department’s Newborn Screening Program should be informed of any difficulties in locating the family. Every effort should be made to assure that each baby who has an abnormal newborn screen receives the appropriate follow-up services in a timely manner.

In the cases of babies with any abnormal results requiring immediate referral to a pediatric medical specialist, a list of Department designated specialists, information about the suspected disorder and the actual test results will be provided to the physician of record or the hospital newborn screening contact. The American College of Medical Geneticists (ACMG), www.acmg.net, provides detailed action plans for follow-up of suspected newborn screening disorders. The University of Illinois at Chicago, Division of Specialized Care for Children (DSCC), www.uic.edu/hsc/dscc, provides additional information about these conditions and the importance of medical homes for children with special health care needs.

In addition to these resources, the Federal Maternal and Child Health Bureau of the Health Resources and Services Administration provided grant funding to create the Region 4 Genetics Collaborative, which includes Illinois, Indiana, Kentucky, Michigan, Minnesota, Ohio and Wisconsin. The goals of this multi-state collaborative include efforts to address inequities in genetics resources and to improve the quality of genetics services, including newborn screening throughout the region. The Region 4 Genetics Collaborative Web site, www.region4genetics.org, provides information about newborn screening, medical homes, specialty care resources and genetic counseling services available within this seven state region.
Illinois Newborn Screening Disorder List

Although additional disorders may be added as determined by the Illinois Department of Public Health under the advisement of the Genetic and Metabolic Disease Advisory Committee, the Illinois newborn screening panel currently includes the following disorders:

Endocrine Disorders
- Congenital adrenal hyperplasia (CAH)
- Congenital hypothyroidism

Hemoglobinopathies
- Sickle cell disease, trait conditions and other hemoglobinopathies
- Alpha thalassemia
- Beta thalassemia major

Amino Acid Disorders
- Homocystinuria (HCU)/Hypermethioninemia
- Maple syrup urine disease (MSUD)
- Phenylketonuria (PKU)/Hyperphenylalaninemia
- Tyrosinemia - tyrosine levels may not be sufficiently elevated for detection in first few days of life
- 5-Oxoprolinuria (5OXP) - may not be reliably detected in first few days of life

Urea Cycle Disorders
- Argininemia - extremely rare
- Argininosuccinic aciduria (argininosuccinate lyase deficiency - ASAL)
- Citrullinemia (argininosuccinate synthetase deficiency - ASAS)

Organic Acid Disorders
- 2-methylbutyryl-CoA dehydrogenase deficiency (2MBCD)
- 3-methylcrotonyl-CoA carboxylase deficiency (3MCC)
- 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (HMG)
- 3-methylglutaconic aciduria (3MGA)
- Beta-ketothiolase deficiency (BKT)
- Glutaric aciduria, type 1 (GA1)
- Isovaleric acidemia (IVA)
- Malonic aciduria (MA) - may not be reliably detected in the first few days of life
- Methylmalonic acidemia (MMA)
- Multiple carboxylase deficiency (MCD)
- Propionic acidemia (PA)

Fatty Acid Oxidation Disorders
- Carnitine/acetyl carnitine translocase deficiency (CACT) - neonatal form is extremely rare
- Carnitine palmitoyl transferase deficiency, type 2 (CPT2) - neonatal form is extremely rare
- Carnitine palmitoyl transferase deficiency, type 1A (CPT1A) - may not be reliably detected in first days of life
- Carnitine uptake defect (CUD) - may not be reliably detected in first few days of life
- Glutaric aciduria, type 2 (GA2)/Multiple acyl-CoA dehydrogenase deficiency (MADD)
- Isobutyryl-CoA dehydrogenase deficiency (IBCD)
- Medium chain acyl-CoA dehydrogenase deficiency (MCADD)
- Medium/Short chain L-3-hydroxyacyl-CoA dehydrogenase deficiency (M/SCHADD)
- Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD)
- Short chain acyl-CoA dehydrogenase deficiency (SCADD)
- Trifunctional protein deficiency (TFP)
- Very long chain acyl-CoA dehydrogenase deficiency (VLCADD)

Other Disorders
- Biotinidase deficiency
- Galactosemia (Classical)
- Cystic fibrosis (CF)
- Lysosomal storage diseases
 - Pompe
 - Fabry
 - Gaucher
 - Krabbe
 - Niemann-Pick
Important Contact Information

Newborn Screening Follow-up Program
Illinois Department of Public Health
Genetics/Newborn Screening Program
535 W. Jefferson St., Second Floor
Springfield, IL 62761
Phone 217-785-8101
FAX 217-557-5396

Newborn Screening Laboratory
Illinois Department of Public Health
Division of Laboratories
2121 W. Taylor St.*
Chicago, IL 60612
Phone 312-793-4752
FAX 312-793-1054

Accounting Services
Illinois Department of Public Health
Account Services Billing Manager
Phone 217-782-5934

Web Sites
Illinois Department of Public Health Genetics/Newborn Screening Program -
www.idph.state.il.us/HealthWellness/genetics.htm

Illinois Department of Public Health Newborn Screening Laboratory -
www.idph.state.il.us/a-zlist.htm#N

*Note: Newborn Screening Shipping Labels
Special courier service shipping labels are available to birthing hospitals. Please contact Newborn Screening Follow-up Program for more information about this service (217-785-8101).

All other submitters of newborn screening specimens are highly encouraged to utilize a courier service for prompt delivery of these dried blood samples, and shipping labels should be addressed to:

Newborn Screening Laboratory
Illinois Department of Public Health
2121 W. Taylor St.
Chicago, IL 60612
Practitioner’s Newborn Screening Responsibilities

Specimen Collection

- Attending physician at birth or in the immediate newborn period has primary responsibility for collection of a specimen for newborn screening. The physician’s responsibility may be delegated to the hospital administrator or the administrator’s designee.

- If the birth is attended by a licensed nurse midwife, the midwife has primary responsibility for collection of a specimen for newborn screening.

- Parents should be informed that a blood specimen will be collected from their infant and printed information about newborn screening and how parents can access screening results should be provided.
 - Newborn Screening Guide for Parents: Baby’s First Steps in Life document is available through the Department’s Genetics/Newborn Screening Program. An electronic file of this document may be downloaded from the Department’s Web site www.idph.state.il.us, and reprinted for distribution.
 - Documentation that a newborn screening specimen was collected and a copy of the screening results should be placed in the infant’s medical record.
 - Parents should be informed that accurate contact information (emergency contact, current address and valid phone number) is vital, should their baby’s newborn screening test be abnormal and additional testing or referral of the infant to a specialist become necessary.

- Physician or health care provider caring for the infant during the first month of life is responsible for newborn screening if -
 - Birth occurs outside of a hospital or medical facility.
 - Birth occurs without a physician or licensed midwife in attendance.

The American Academy of Pediatrics, August 2000 supplement to Pediatrics, “Serving the Family from Birth to the Medical Home,” suggests that the role of the medical home health care professional include establishment of office protocol to retrieve the results of newborn screening for all newborns admitted to the practice when scheduling the first appointment. When screening results cannot be documented, a newborn screening specimen should be collected from the baby and submitted for testing.

- The Illinois Department of Public Health encourages primary care practitioners to provide medical homes, and to facilitate follow-up services for infants with abnormal newborn screening results.
 - The Federal Maternal and Child Health Bureau of the Health Resources and Services Administration (HRSA) funded Region 4 Genetics Collaborative Web site www.region4genetics.org provides information about newborn screening, medical homes, pediatric specialty care resources and genetic counseling services available within this seven state region.
• Primary care providers have an obligation to verify newborn screening results, and should not assume lack of notification indicates the baby’s screen was normal.
 - Reports may be sent to the wrong health care provider.
 - Specimens may be lost in transit to the Department laboratory.
 - On rare occasions, hospitals may fail to collect a newborn screening specimen prior to hospital discharge or transfer.

• If there is no physician caring for the infant, the parents are responsible for obtaining newborn screening for their baby.

Newborn Screening Fee
• A fee will be charged for each specimen submitted to the Department Newborn Screening Laboratory for testing. This fee provides funding for testing, follow-up services for babies with abnormal results, and provision of certain medically necessary dietary treatment formulas.

• The Illinois Department of Public Health bills hospitals and health care agencies on a monthly basis for all newborn screening specimens submitted during that month.

Repeat Specimens, Diagnostic Testing and Referrals
• Physician of record or hospital designee is responsible for informing parents and/or infant’s primary care/medical home provider of abnormal or unsatisfactory test results. If repeat screening is necessary, the physician of record is responsible for obtaining and submitting a repeat specimen and/or informing the infant’s primary care provider of the need for additional testing.

• If referral of the infant to a pediatric medical specialist is necessary, the physician of record or hospital designee is responsible for assisting the baby’s family and facilitating the referral. The Department highly recommends that the physician’s office contact the medical specialist and provide the screening results to assure the referral is completed, and the screening results are accurately reported. Physicians and hospital staff should not refer to the newborn metabolic screen as the “PKU test.” Use of this outdated, inappropriate terminology has often resulted in confusion about newborn screening results among primary care providers, medical specialists and parents.

Refusal of Newborn Screening
• Parents may refuse newborn screening only on the basis of religious beliefs and practices.

• If parents refuse newborn screening of their infant, parent education about the seriousness of newborn screening disorders should be provided, and the infant’s primary care provider should be informed about the refusal. A written objection statement should be signed by the parents and placed in the infant’s medical record, and a copy of the statement may be sent to Illinois Department of Public Health, Genetics/Newborn Screening Program.
Infants Born Outside State of Mother’s Residence

- Illinois residents whose infants are born in other states may obtain newborn screening through the Department’s Newborn Screening Laboratory. The physician should obtain the Department’s filter paper specimen forms or order the screening through an Illinois birthing hospital. If an initial screening was performed in another state, a second newborn screening specimen may be submitted to the Department. Specimens should be collected and submitted as soon as possible after 24 hours of age. Newborn screening of infants older than 6 months of age is not recommended as the Department’s normal values are based on normal analytes, distributions and controls for newborns. In these cases, a consultation with a pediatric sub-specialist is recommended.

- Infants born in Illinois whose mothers reside in another state must have a specimen sent to the Department’s Newborn Screening Laboratory. Illinois provides screening for 29 of the disorders currently recommended by the American College of Medical Geneticists and the U.S. Centers for Disease Control and Prevention, plus several additional disorders, but parents who choose to are free to obtain a second screening within their state of residence.

Collection of Newborn Screening Specimens

Filter Paper Collection Form

- Only Department filter paper specimen collection forms are accepted by the Illinois Department of Public Health Newborn Screening Laboratory. The U.S. Food and Drug Administration now requires printed expiration dates on specimen cards, and health care providers are advised to check the card prior to specimen collection. See Appendix to view a copy of the Department collection form.

- Newborn screening filter paper specimen collection forms may be requested by contacting the Department’s Division of Laboratories Springfield office, 217-524-6222 by phone, or may fax a request with appropriate contact information to 217-524-7924.

- Filter paper specimen cards should be stored in a cool, dry location out of direct sunlight. Cards should be stored in their original wrappings and stacked in a manner that avoids compressing the paper. When properly stored specimen cards have a shelf life of around two years. However, each card has a printed expiration date and once expired, the specimen cannot be considered valid. When expired cards are received, although testing is performed, the Department must issue a report requesting submission of a new sample for a valid screening.

- Birth history and identifying information requested on specimen collection forms should be complete, legible and accurate.

- Accurate personal health information is crucial to valid and reliable testing.
Accurate personal contact information is vital to the physician for identifying the infant and contacting the parents, should abnormalities be detected in the blood sample.

Timing of Specimen Collection

- Newborn screening specimen collection from healthy newborns should occur as soon as possible after 24 hours of age. All newborns should have a sample collected within the first 24-48 hours of life. Specimens should not be collected prior to 24 hours of age with the exception of special circumstances.

- Special circumstances include:
 - Early discharge: If the infant is to be discharged at less than 24 hours of age, collect specimen prior to discharge. Inform parents that infant must be rescreened during the second day of life.
 - Transfers: If the infant requires transfer to another facility, if at all possible, a specimen should be collected prior to transfer, regardless of infant’s age. If a specimen cannot be collected prior to transfer due to the medical instability of the neonate, the transferring facility is responsible for informing the admitting facility of the need for specimen collection prior to transfusion and/or within first 24-48 hours of life.
 - Transfusions: If the infant requires transfusion, specimen should always be collected prior to transfusion, regardless of infant’s age.
 - Premature and sick infants: See Special Considerations section below.

- If a specimen is collected prior to 24 hours of age, **repeat specimen collection is necessary as soon as possible during the second day of life.**

Special Considerations

- Infants born outside of hospital/medical facilities: These infants should have a specimen collected at 24-48 hours of age.

- Premature and sick infants: If the infant’s condition is medically unstable, the specimen should be collected at 24-48 hours of age.
 - All infants admitted to a neonatal intensive care unit (NICU) or special care nursery should have a routine second specimen collected at 14 days of age or prior to discharge from the unit, whichever comes first.
 - The “NICU” check box on the specimen card should be marked on specimens from all infants admitted to a NICU or special care nursery. Retest box should be marked for all repeat specimens.
- Infants receiving special feedings: Infants requiring soy formula, hyperalimentation or total parenteral nutrition (TPN), and those not yet receiving milk (galactose) feedings at the time of specimen collection require documentation of feeding type or status on the specimen card.
 - The feeding type box should be clearly marked for “breast,” “soy,” “other,” “TPN” or “NPO” (nothing by mouth). This information is important to newborn screening laboratory staff and the baby’s physician should an abnormality be detected.
 - Soy formula or lack of milk feeding will affect screening for galactosemia.
 - Hyperalimentation and TPN may affect tandem mass spectrometry screening for some amino acid, fatty acid oxidation and organic acid disorders.
 - If screening results suggest TPN effects, another specimen is requested when the infant has been off TPN for 48 hours, or on day 14 of life if the baby was admitted to NICU or special care nursery.

- Infants receiving antibiotics: When infants are receiving antibiotics at the time of specimen collection, the “antibiotic” box of the specimen collection card should be marked, as the presence of antibiotics and some other medication metabolites (valproic and benzoic acids) may be detected by tandem mass spectrometry. In these cases, a repeat sample will be requested.

- Transfusions: Collect initial specimens prior to transfusion, if at all possible. If this is not possible and the infant was transfused prior to specimen collection, indicate the last transfusion date prior to the specimen collection on the filter paper collection form.
 - Transfusions will invalidate screening for classical galactosemia.
 - Transfusions will invalidate screening for biotinidase deficiency.
 - Transfusions will invalidate screening for hemoglobinopathies.
 - Specimen collection immediately after transfusion will affect all newborn screening results. If a post-transfusion specimen is necessary, collection should be delayed for 48 hours post-transfusion.
 - If the infant’s initial specimen was collected post-transfusion, a second specimen should be collected 48 hours post-transfusion, and a third specimen is required 90 days after the final transfusion.

Tips for specimen collection
- Electronic copies of the newborn screening specimen collection posters “Neonatal Screening: Blood Specimen Collection and Handling Procedure” and “Simple Spot Check” are available for download and printing through the Genetics/Newborn Screening Program, or for purchase through the Clinical Laboratory Standards Institute (CLSI). These posters provide an excellent training resource.
• The Genetics/Newborn Screening Program has provided to each Perinatal Network a copy of the Clinical Laboratory Standards Institute (CLSI) document, “Blood Collection on Filter Paper for Neonatal Screening Programs; Approved Standard” (LA4-A4) which is available on loan to birth centers.

• Heel stick is the preferred mode of collection for newborn screening whenever possible.

• If heel stick is not possible, use of a syringe to collect blood from an umbilical catheter is recommended by the CLSI.
 o If heel stick is not a viable option, see CLSI recommended procedures for specimen collection, Approved Standard LA4-A4.
 o Some screening results may vary slightly between heel stick specimens and venous or capillary specimens.

• Collection of specimens in capillary tubes is not recommended by the CLSI.
 o **Heparinized capillary tubes** should only be used when heel stick or collection by syringe is not possible.
 o Use extreme caution when applying a blood sample to the filter paper via capillary tubes. Caution is needed to prevent damage to filter paper and avoid “layering.” Uniform application of the blood sample is required.
 o Layering can affect the validity and reliability of screening results. If heel stick is not an option, see the CLSI recommended procedures for specimen collection.

• **EDTA anticoagulant should never be used** for newborn screening specimen collection and will invalidate screening results and may cause false negative or false positive results.

Collection of Repeat specimens

• Repeat screening is requested by the Department when results of the original specimen were borderline abnormal, the specimen was declared unsatisfactory for testing, or declared invalid due to delayed submission or incomplete information on the specimen card.

• Routine repeat screening also is required for all infants admitted to the NICU or special care nursery. See Section “Special Circumstances – Premature and Sick Infants.” Submitters should mark the retest box on the specimen card.

• Submitters should provide adequate information to allow matching of any retest specimens to the infant’s original newborn screening record. All known names of the infant (beginning with the birth name), the mother’s full name, date of birth and the infant’s medical record number will greatly assist Newborn Screening Program staff in matching specimens.
Handling and Submission of Newborn Screening Specimens

Submitting Specimens

- It is highly recommended that completed newborn screening specimen collection forms be air dried for a minimum of three hours and submitted to the Department laboratory for testing within 24 hours of collection using a courier service.

- For details about the latest recommendations for specimen submission contact:
 Illinois Department of Public Health
 Genetics/Newborn Screening Program
 535 W. Jefferson St., Second Floor
 Springfield, IL 62761

- Currently, all Illinois birthing hospitals may utilize the Department supported courier service for pickup of newborn screening specimens and shipment to the Chicago Newborn Screening Laboratory. Contact the Newborn Screening program 217-785-8101 for more information about this service.

Timeliness

- Specimens should be submitted to Department Division of Laboratories on a daily basis, during regular business days Monday through Friday. Saturday UPS courier service pickup of specimens for next business day delivery also is available to birthing hospitals, but must be requested 24 hours in advance and arranged with the courier service. For more information contact the Newborn Screening Program 217-785-8101.

- Newborn screening disorders are serious and can be life threatening, therefore early detection and treatment is vital. Failure to submit specimens promptly may unnecessarily delay detection and treatment of affected infants. Batching of specimens from multiple collection days is unacceptable.

- Tracking courier service delivery of specimens to the Department’s Newborn Screening Laboratory is the responsibility of birthing hospitals. Please contact the Newborn Screening Program at 217-785-8101 for more information about tracking deliveries and reporting courier service problems.

- Reports on the timeliness of specimen delivery for each hospital submitting specimens to the Department are available through the Newborn Screening Program.
Reporting of Screening Results

Normal Results

- Reported by written laboratory mailer sent to the submitting facility or submitting agent when testing is completed.

Abnormal Results

- Newborn screening is not diagnostic. Abnormal screening results are designated by Department laboratory staff as “presumptive positive” abnormal or “suspect borderline” abnormal.

 - **Presumptive positive abnormal**: Indicates with high probability that the infant may have a disorder. Newborn Screening Program staff will recommend that infants with presumptive positive abnormal screenings be referred to medical specialists for consultation and/or diagnostic testing.
 - These results will be reported by phone call to submitting physician or submitting facility contact person, followed by a letter reporting the abnormal results and recommendations (sent by fax and mail).
 - A complete laboratory report (mailer) of all results is also sent to the submitting facility or submitting agent by Department Newborn Screening Laboratory for every specimen received.

 - **Suspect borderline abnormal**: Indicates that the screening was slightly abnormal and that the infant needs a medical evaluation and a repeat newborn screen. If the infant has any symptoms of a disorder, referral to a medical specialist for diagnostic testing is indicated.
 - These results will be reported by letter indicating abnormal results and recommendations.
 - The letter reporting results and recommending additional follow-up screening or referral is sent by mail to the submitting physician or facility.
 - A complete laboratory report (mailer) of all results also is sent to the submitting facility or submitting agent for each specimen received.

Unsatisfactory Specimens

- Unsatisfactory specimen reports indicate the specimen was improperly collected, handled or submitted, as determined by the Department’s Division of Laboratories. Specimens must be of good quality to assure reliable, valid newborn screening; unsatisfactory specimens require collection and submission of a new sample to assure that every baby receives a valid newborn screening.
 - These results are reported by letter indicating the unsatisfactory nature of the specimen and the need for immediate repeat specimen collection.
 - The letter is sent by mail to the submitting physician or facility.
 - Unsatisfactory specimen results also are included in the Department’s laboratory report sent to the submitting facility or submitting agent.
• Reports on the number and type of unsatisfactory specimens are made available to hospitals by the Newborn Screening Program.

Referrals to Pediatric Medical Specialists and Other Agencies

Pediatric Medical Specialists

• Lists of Department designated pediatric medical specialists are provided by the Newborn Screening Program with letters reporting all presumptive positive abnormal results (those indicating need for referral to a medical specialist). See Appendix for a listing of medical centers providing pediatric sub-specialty services. These medical specialist lists are subject to periodic revision, and updated lists may be requested by calling 217-785-8101.

• Infants with family history of a disorder or those who appear symptomatic, require consult with a pediatric medical specialist. These infants should be referred for medical evaluation and possible diagnostic testing, regardless of newborn screening results or any Department recommendations suggested on the report.

Services for Infants with Sickle Cell Disease and Other Hemoglobin Disorders

• Family education, genetic counseling and diagnostic services are available to all families of infants with sickle cell disease, other hemoglobinopathies, and those who carry a hemoglobin disorder trait.
 o The Illinois Department of Public Health, through grants to university-based medical clinics, provides diagnostic and treatment services for infants and children identified with sickling hemoglobin disorders or traits. See Appendix for a listing of medical centers providing pediatric hematology services, or call 217-785-8101 for a listing of Department designated pediatric hematologists.
 o Additional services for infants, children and adults with thalassemia disorders are available through Children’s Memorial Hospital Comprehensive Thalassemia Center, Division of Hematology-Oncology-Transplantation in Chicago; call 773-880-4125 for more information about these services.
 o In addition, by Memorandum of Understanding, the Department has joined with the Sickle Cell Disease Association of Illinois (SCDAI) to provide educational services to families of individuals with sickle cell diseases, other hemoglobinopathies or traits. Please call 312-345-1100 to learn more about SCDAI services.
University of Illinois at Chicago, Division of Specialized Care for Children (DSCC)

- DSCC provides payment for the initial diagnostic services for infants with certain abnormal metabolic newborn screening results provided these services are coordinated by specialists jointly approved by the Department and DSCC. The specific disorders for which these services are available are determined by DSCC.
 - DSCC provides these services in conjunction with other third-party payers, and remains the payer of last resort.
 - DSCC covers the ongoing medical care for infants and children diagnosed with certain metabolic disorders, and in those cases in which the family meets certain eligibility requirements.
 - DSCC does not provide initial diagnostic services or ongoing medical care for infants and children with sickle cell disease and other hemoglobinopathies, those who are carriers of a hemoglobin disorder, or for children with endocrine disorders.

Local Public Health Departments

- The Illinois Department of Public Health works in cooperation with local public health departments to provide follow-up services to the families of infants with abnormal newborn screening test results and infants diagnosed with newborn screening disorders. In some cases, the assistance of a local public health nurse may be requested in order to locate and assist the family in obtaining necessary follow-up services.
 - Newborn Screening Program staff and/or the infant’s pediatrician may have difficulty locating the families of infants with abnormal test results, or parents may not understand the importance of seeking additional medical care.
 - Following the diagnosis of an endocrine, metabolic or hemoglobin disorder, the pediatric medical specialist may recommend community support services for the families of children with these serious disorders.
 - On occasion as families relocate or change medical care providers, the medical specialist may lose contact with the parents of children diagnosed with endocrine, metabolic and hemoglobin disorders. The assistance of a local health department public health nurse may be requested to locate these families and assure continuity of long-term care for the children.
 - A list of local public health department contacts may be requested by calling 217-785-8101.
Newborn Screening Disorders

Amino Acid/Urea Cycle Disorders

These disorders are inherited as autosomal recessive defects of amino acid metabolism. Each amino acid disorder is associated with a specific enzyme defect. Affected infants cannot properly metabolize certain amino acids, resulting in elevated levels of the amino acid or metabolites in body fluids. Accumulation of amino acids or metabolites may become neurotoxic, causing damage to organs and resulting in developmental delays, mental retardation or death. Clinical findings may include poor feeding, vomiting, lethargy or irritability, seizures, coma, respiratory distress and liver damage. MSUD may cause metabolic decompensation, and infants with this condition may require peritoneal dialysis or hyperalimentation without branched-chain amino acids (leucine/isoleucine and valine). See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about these disorders and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

Urea cycle disorders involve defects in the breakdown of proteins and the conversion of ammonia and bicarbonate to urea for elimination of waste nitrogen. The resulting accumulation of ammonia in blood and tissues is neurotoxic and requires immediate detection and medical intervention. Urea cycle disorders may result in severe hyperammonemia. Infants with this condition require prompt medical intervention that may include hemodialysis. See the Department’s Web site for newborn screening fact sheets with additional information about urea cycle disorders and visit the American College of Medical Geneticists Web site to review the ACMG “ACT” sheets.

In Illinois, newborn screening includes screening for the following amino acid disorders:
- Phenylketonuria (PKU) also see section on Phenylketonuria
- Maple syrup urine disease (MSUD)
- Tyrosinemia* type 1, and possibly types 2 and 3
- Homocystinuria (HCU)
- 5-oxoprolinuria

Urea cycle disorders: Citrullinemia (ASAS), Argininosuccinic aciduria (ASAL) and Argininemia

- **Incidence**
 - PKU and hyperphenylalaninemia - one in 10,000 births
 - MSUD - one in 200,000 births
 - Tyrosinemia - one in 500,000 births (one in 12,500 births among French Canadian populations)
 - Homocystinuria - one in 200,000 births
 - 5-oxoprolinuria - extremely rare, actual incidence unknown
 - Urea Cycle Disorders - one in 200,000 to 300,000 births

- **Analytes Measured in Screening**
 - Measurement of specific analytes by tandem mass spectrometry (MS/MS) reported in micro-Moles/Liter (uM/L)

- **Possible Disorder**
 - Phenylalanine
 - Phenylketonuria (PKU)
Amino Acid/Urea Cycle Disorders - Continued

- **Analytes Measured in Screening**
 - Tyrosine
 - Methionine
 - (Iso)leucine and Valine
 - Citrulline
 - Arginine
 - 5-oxoproline

- **Possible Disorder**
 - Tyrosinemia
 - Homocystinuria (HCU)
 - Maple syrup urine disease (MSUD)
 - Citrullinemia (ASAL) or Argininosuccinic aciduria (ASAS)
 - Argininemia
 - 5-oxoprolinuria

- **Reporting Ranges***

 Abnormal results reported by phone, letter, fax to physician of record or hospital contact unless otherwise specified.

 Presumptive Positive
 Immediate referral to pediatric metabolic disease specialist

 Suspect Borderline Abnormal
 Medical evaluation and repeat newborn screening specimen within one to two days; mark retest box on specimen card.

 Suspect Amino Acid Abnormal due to TPN (reported by fax and letter)
 If baby is still in NICU or on TPN, repeat newborn screen when off TPN 48 hours, at day 14 of life, or prior to discharge, whichever comes first.

 If baby has been discharged from hospital or was not on TPN at time of specimen collection, evaluate infant’s status and repeat newborn screen within one to two days.

- **Feeding Effect**
 Hyperalimentation and TPN may affect results. Unless otherwise instructed, repeat specimens are best collected 48 hours after TPN is discontinued.

- **Transfusion Effect**
 Specimen collection prior to transfusion is always recommended. If post-transfusion specimen collection is necessary, collection is best performed 48 hours post-transfusion.
Amino Acid/Urea Cycle Disorders - Continued

- **Timing Effect**
 If specimen is collected at less than 24 hours of age, submit second sample during second day of life.

- **Specialist**
 Metabolic disease specialist (Department/DSCC designated), see Appendix for the contact information.

- **Treatment**
 Treatment is disorder specific and may include specialized prescription medical formula, special diet limited in specific proteins and, in some cases, supplements and medications.

 The Department provides special medically necessary formula without charge to Illinois residents who are under comprehensive medical management provided by a metabolic disease specialist designated by the Department.

Comments
*Newborn screening may not detect all cases of tyrosinemia as tyrosine levels may not increase to detectable levels until after the fifth day of life.

**Additional amino acid levels may be reported when significant abnormalities are detected as by-products of tandem mass spectrometry, and in most cases the laboratory recommendation will suggest immediate consult with a pediatric metabolic specialist. These abnormalities may include:

- Elevated Glycine – possibly indicative of Non-ketotic hyperglycinemia
- Low Citrulline – possibly indicative of Ornithine transcarbamylase deficiency
- Low Citrulline/elevated Glutamine – possibly indicative of Carbamoylphosphate synthetase deficiency
- Elevated Ornithine and elevated Citrulline – possibly indicative of Hyperammonemia/Ornithinemia/Citrullinemia (HHH)

***For questions about the most current laboratory reporting values for these disorders, contact the Department’s Division of Laboratories at 312-793-4752.**
Biotinidase Deficiency

This is an autosomal recessive disorder of biotin recycling that leads to multiple carboxylase deficiencies. Individuals with biotinidase deficiency cannot recycle biotin (vitamin B), and cannot process dietary protein-bound biotin. Early detection and treatment is essential to prevent permanent neurological damage. See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about this disorder and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

- **Incidence**
 One in 180,000 births

- **Analyte Measured in Screening**
 Biotinidase enzyme activity is determined by colorimetric analysis.

<table>
<thead>
<tr>
<th>Reporting Ranges</th>
<th>Follow-up Referrals and Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal results reported by phone, letter and fax to physician of record or hospital contact</td>
<td>Medical evaluation and collect repeat newborn screen within one to two days; mark retest box on specimen card. If retest sample does not have detectable biotinidase activity, refer to Department designated metabolic specialist for diagnostic testing.</td>
</tr>
</tbody>
</table>

- **Biotinidase activity absent**
 (initial specimen)

- **Feeding Effect**
 None

- **Transfusion Effect**
 Screening is affected.* Specimen should always be collected prior to transfusion, even if infant is younger than 24 hours of age. If initial specimen collected post-transfusion a second specimen is required 48 hours post-transfusion and third specimen is required three months following the last transfusion.

- **Timing Effect**
 If specimen is collected at less than 24 hours of age, submit second sample during second day of life.

- **Specialist**
 Metabolic disease specialist (Department/DSCC designated), see Appendix for the contact information

- **Treatment**
 Daily prescription dosage of biotin supplement
Comments

Improper collection and care of specimens may cause biotinidase enzyme degradation. Exposure of specimens to excessive heat and/or delayed submission may result in false positive screening results.

*Transfusions may have long-term effects due to biotinidase activity of transfused red blood cells and may result in false negative screens for biotinidase deficiency.
Congenital Adrenal Hyperplasia

This is an autosomal recessive disorder of steroid hormone synthesis; 90 percent of individuals with congenital adrenal hyperplasia (CAH) cannot produce adequate amounts of the enzyme 21-hydroxylase, which is necessary for synthesis of cortisol. In Illinois, newborn screening includes testing for CAH due to 21-hydroxylase deficiency. In 50 percent to 75 percent of 21-hydroxylase deficiency cases, in addition to cortisol deficiency, the infant cannot synthesize adequate amounts of aldosterone, resulting in salt-wasting CAH. In utero, the developing fetus with CAH is exposed to excessive levels of androgen, and female infants may have varying degrees of virilization of external genitalia. Male infants usually appear normal at birth. Both males and females are susceptible to acute adrenal insufficiency. Infants with salt-wasting CAH are very susceptible to electrolyte imbalance and dehydration. Early detection and treatment of CAH is essential to prevent adrenal crisis, dehydration and sudden death in the first few weeks of life. See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about this disorder and visit the American College of Medical Geneticists Web site, www.acmg.net, to review the ACMG “ACT” sheets.

- Incidence One in 20,000 births
- Analyte Measured in Screening 17-OH (hydroxy) progesterone (17-OHP) level is measured by fluorometric assay, reported in nanograms per milliliter (ng/mL)*

Due to the effects of pre-maturity and physiological stress on 17-OHP levels, a tiered of reporting for abnormal results has been developed based on birthweight and/or gestational age of newborns by the Department of Newborn Screening Laboratory.

Pre-term infants are defined as gestational age less than or equal to 36 wks.
Low birth weight is defined as birth weight less than 2000 grams.
Very low birth weight is defined as less than or equal to 1500 grams.

- Reporting Ranges** Follow-up Referrals and Testing
 Abnormal results reported by phone, letter and fax to physician of record or hospital contact unless otherwise specified.

 Presumptive positive abnormal
 Full-term infant $\geq 55\ ng/mL$
 Immediate consult/referral to pediatric endocrinologist and serum electrolytes and 17-OHP

 Pre-term infant/low birth weight
 $\geq 80\ ng/mL$
 Consultation with pediatric endocrinologist; evaluation of risk for CAH; serum electrolytes and 17-OHP or repeat newborn screen. If retest remains abnormal, refer to pediatric endocrinologist.

Note: While neonates in the NICU*** with abnormal CAH screens need additional testing to rule out CAH, the neonatologist may use discretion monitoring in these cases.
• Reporting Ranges**

** Suspect borderline abnormal (reported by letter only)**
- Full-term infant
 - 30 - 54 ng/mL

- Pre-term, low birth weight
 - 55 - 79 ng/mL

Follow-up Referrals and Testing

Medical evaluation and repeat newborn screen within one to two days, unless baby was admitted to NICU and will be tested at a later date. ***If retest remains abnormal, refer to pediatric endocrinologist.

- Medical evaluation and repeat newborn screen within one to two days, unless baby was admitted to NICU and will be tested at a later date. *** If retest remains abnormal refer to pediatric endocrinologist.

• Feeding Effect
 - None

• Transfusion Effect
 - If post-transfusion specimen collection is required, sample should be obtained 48 hours post-transfusion; enter date of last transfusion prior to specimen collection on specimen card.

• Timing Effect
 - If specimen is collected at less than 24 hours of age, submit second sample during second day of life.

• Specialist
 - Pediatric endocrinologist (Department/DSCC designated), see Appendix for the contact information.

• Treatment
 - Simple virilizing CAH
 - Daily cortisol replacement therapy
 - Salt-wasting CAH
 - Daily cortisol and aldosterone replacement therapy, dietary salt supplements

Comments

Factors such as specimen collection prior to 24 hours of age, pre-term, low birth weight and illness may cause elevation of 17-OH progesterone levels. However, follow-up screening and/or diagnostic testing are necessary to rule out this life-threatening disorder.

Infants with any symptoms of vomiting, dehydration, weight loss, poor feeding, electrolyte imbalance and/or lethargy, require immediate medical attention, emergency care and referral to a pediatric endocrinologist.

Treatment with glucocorticoids (cortisone, dexamethasone) may cause false negative results.
Most reference laboratories measure 17-OHP levels in nanograms per deciliter (ng/dL) and caution should be used when comparing newborn screening results (ng/mL) with reference laboratory results; please consult with a pediatric endocrinologist when in doubt about diagnostic testing results for possible CAH.

Laboratory reporting cut-off values are procedure dependent and are subject to periodic revision. For questions about the most current laboratory cut-off values for this disorder, contact the Department’s Division of Laboratories at 312-793-4752.

Administrative Rules for Newborn Screening require that a routine repeat specimen be collected from all infants admitted to a NICU or Special Care Nursery. Second specimen should be collected on day 14 of life or prior to discharge, if baby is discharged before 2 weeks of age.
Congenital Hypothyroidism

Congenital hypothyroidism results from an inability of the thyroid gland to produce adequate amounts of the hormone, thyroxine. Congenital hypothyroidism is usually due to a failure of the thyroid gland to develop properly in utero. Less frequently, the disorder can result from an autosomal recessive defect in thyroid hormone synthesis. Primary congenital hypothyroidism usually requires lifetime treatment. Occasionally cases of transient hypothyroidism occur as a result of maternal anti-thyroid medications or temporary thyroid suppression in the infant due to exposure to iodine, prematurity or other causes. Consultation with a pediatric endocrinologist is usually recommended in these cases. See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about this disorder and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

- Incidence
 One in 2,000 births

- Analytes Measured in Screening
 Thyroid stimulating hormone (TSH) and thyroxine (T4). If TSH is elevated (within top 4 percentile for each day), T4 level is determined. Levels are tested by fluorometric assay.

- Reporting Ranges*
 All abnormal results reported by phone, letter and fax, unless otherwise specified.

 Presumptive positive abnormal
 TSH ≥ 54 uIU/mL
 T4 < 5 ug/dL

 Suspect borderline abnormal
 TSH ≥36-54 uIU/mL
 T4 ≥5-8 ug/dL
 (reported by letter only)

- Follow-up Referrals and Testing
 Immediate referral to pediatric endocrinologist, serum TSH and free T4

 Medical evaluation and repeat newborn screen within one to two days; mark retest on specimen card. If retest remains abnormal, refer to pediatric endocrinologist.

- Feeding Effect
 None

- Transfusion Effect
 If post-transfusion specimen collection is required, collection is best performed 48 hours post-transfusion; enter date of last transfusion prior to specimen collection on the specimen card.

- Timing Effect
 If specimen is collected at less than 24 hours of age, submit second sample during second day of life. In pre-term infants, production of TSH may be delayed in first few days of life.
Congenital Hypothyroidism – Continued

- Specialist
 Pediatric endocrinologist (Department/DSCC designated), see Appendix for contact information.

- Treatment
 Daily thyroid supplement

Comments

TSH increases dramatically in first few hours after birth and gradually returns to normal levels in about 72 hours. This normal TSH elevation will be detected if the specimen is collected before the infant is 24 hours of age.

Very low birth weight infants and infants with cardiac defects, congenital craniofacial anomalies, and Down syndrome may be at increased risk of late onset hypothyroidism, and consult with pediatric endocrinology and/or diagnostic testing is advisable regardless of newborn screening results.

Although newborn screening can detect congenital hypothyroidism with a high degree of accuracy, other forms of hypothyroidism may develop within the first few weeks of life. The physician therefore must remain alert to clinical symptoms in older infants despite normal newborn screening results. Repeat the screening or refer to pediatric endocrinologist if any suspicions exist about possible hypothyroidism, regardless of newborn screening results.

Family history of thyroid disorders may indicate the need for diagnostic testing or pediatric endocrinology consult regardless of newborn screening results.

*Laboratory reporting cut-off values are procedure dependent and are subject to periodic revision. For questions about the most current laboratory cut-off values for this disorder, contact the Department’s Division of Laboratories at 312-793-4752.
Cystic Fibrosis

Cystic fibrosis (CF) is an autosomal recessive disorder that results in production of a defective form of cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR protein is an important chloride channel within epithelial cells of multiple organs, and regulates movement of salt and water into and out of the cells. In individuals with CF, the cells lining passageways of the lungs, pancreas and other organs produce thick, sticky mucus. Clinical signs and disease progression vary among affected individuals, but may include progressive lung disease, pancreatic insufficiency, male infertility and elevated sweat chloride levels. Early detection and diagnosis with adequate nutritional support and aggressive therapies to reduce risks of respiratory exacerbations have been shown to improve clinical outcomes. See the Department Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about this disorder and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheet.

- Incidence
 - Varies with race and ethnicity
 - One in 3,200 Caucasian births
 - One in 9,000 Hispanic births
 - One in 15,000 African-American births
 - One in 30,000 Asian births

- Analyte Measured in Screening
 - Measurement of immunoreactive trypsinogen (IRT)* level by fluorometric assay reported as nanograms per milliliter (ng/mL). If the IRT is in the top 4 percentile for the day, DNA mutation analysis for a panel of CFTR mutations is also performed.

- Reporting Ranges*
 - Abnormal results reported by phone, letter, fax to physician of record or hospital contact.

 Presumptive Positive
 - ITR** in top 4 percentile, two CFTR mutations
 - IRT** in top 4 percentile, one CFTR mutation
 - IRT \(\geq 170 \text{ng/mL} \) IRT **

- Follow-up Referrals and Testing
 - Immediate referral*** to CF specialist for diagnostic sweat testing and genetic counseling services.

- Feeding Effect
 - None
Cystic Fibrosis - Continued

- Transfusion Effect

 Screening may be affected. Specimen should always be collected prior to transfusion, even if infant is younger than 24 hours of age. If initial specimen was collected post-transfusion, a second specimen is required 48 hours post-transfusion and third specimen is required three months following the last transfusion.

- Timing Effect

 If specimen is collected at less than 24 hours of age, submit second sample during second day of life.

- Treatment

 Dietary and vitamin supplements, respiratory therapies and frequent visits for evaluation and support are usually provided.

- Specialist

 Pediatric pulmonologist and/or pediatric gastroenterologist specializing in care of children with CF, (Department/DSCC designated), see Appendix for contact information.

Comments

*Laboratory reporting cut-off values are procedure dependent and are subject to periodic revision. For questions about the most current laboratory cut-off values for this disorder, contact the Department’s Division of Laboratories at 312-793-4752.

**Meconium ileus has been clinically associated with the diagnosis of cystic fibrosis in newborn infants, and any infant with this condition should have diagnostic evaluation through a CF specialist, regardless of the infant’s newborn screening results. In some cases, normal IRT levels causing false negative newborn screens for CF have been reported in babies with meconium ileus.

***All babies with abnormal CF newborn screening results should be referred to a CF specialist for confirmatory pilocarpine iontophoresis sweat testing and genetic counseling services. Sweat testing for newborns should only be performed under the direction of a CF specialist at laboratories in compliance with Clinical Laboratory Standards Institute (CLSI) guidelines.
Fatty Acid Oxidation Disorders

Fatty acid oxidation (FAO) disorders are autosomal recessive inherited metabolic conditions. Each FAO disorder is associated with a specific enzyme defect in the fatty acid metabolic pathway, and affects utilization of dietary and stored fats. These disorders lead to an accumulation of fatty acids in the body, or an inability to breakdown dietary or stored fats, with a decrease in cell energy metabolism. Many of the FAO disorders cause a significant risk of death during the first clinical episode. In most cases, the first episode arises following illness or fasting, and occurs in infancy or early childhood. FAO disorders can cause recurrent episodes of hypoglycemia. Clinical findings may include lethargy, hypotonia, failure to thrive, persistent vomiting and hepatomegaly, rhabdomyolysis, and Reye syndrome-like episodes. Significant disability may result from prolonged episodes of hypoglycemia. See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about these disorders and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

In Illinois, newborn screening includes testing for a panel of acylcarnitines. Following is a list of the FAO disorders that may be detected:

- Short chain acyl-CoA dehydrogenase deficiency (SCADD)
- Medium chain acyl-CoA dehydrogenase deficiency (MCADD)
- Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD)
- Trifunctional protein deficiency (TFP)
- Very long chain acyl-CoA dehydrogenase deficiency (VLCAD)
- Carnitine palmitoyl transferase deficiency type 2 (CPT 2)
- Carnitine/acilcarnitine translocase deficiency (CACT)
- Carnitine palmitoyl transferase deficiency type 1 (CPT 1 or CPT 1A)
- Glutaric aciduria type 2 (GA 2)/Multiple acyl-CoA dehydrogenase deficiency (MADD)
- Carnitine uptake defect (CUD)
- Medium/Short chain L-3-hydroxyacyl-CoA dehydrogenase deficiency (M/SCHAD)
- Isobutyryl-CoA dehydrogenase deficiency (IBCD)*

- Incidence
 - MCADD - one in 18,000 births
 - LCHAD - one in 400,000 births
 - VLCAD - one in 100,000 births
 - SCADD - one in 20,000 births
 - Other Disorders - one in 500,000 births

- Analytes Measured in Screening
 - Specific acylcarnitines** measured by tandem mass spectrometry (MS/MS), reported as micro-Moles per Liter (µM/L)

 - Butanoyl carnitine (C4) is the primary analyte
 - Possible Disorder
 - SCADD, IBCD*, GA2/MADD, MSCHAD
 - Multiple medium chain acylcarnitines
 - MCADD
 - Octanoyl carnitine (C8) is the primary analyte
 - Possible Disorder
 - LCHAD/TFPD
 - Hydroxy-hexadecanoyl carnitine (C16:OH) is the primary analyte
 - Possible Disorder
 - LCHAD/TFPD
Fatty Acid Oxidation Disorders – Continued

<table>
<thead>
<tr>
<th>Analytes</th>
<th>Possible Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple long chain acylcarnitines Tetradecenoyl carnitine (C14:1) is the primary analyte (C14:1, C14 and C16)***</td>
<td>VLCAD</td>
</tr>
<tr>
<td>Multiple long chain acylcarnitines Hexadecanoyl carnitine (C16) or Octadecenoyl carnitine (C18:1) is the primary analyte (C16, C18:1 and C18:2)***</td>
<td>CPT 2/CACT</td>
</tr>
<tr>
<td>Free carnitine (elevated level) is the primary analyte (C0, and C0/C16+C18 ratio elevated)</td>
<td>CPT1/CPT1A</td>
</tr>
<tr>
<td>Multiple acylcarnitines (C4, C5, C8, C12, C14, C16 and C5-DC)***</td>
<td>GA 2/MADD</td>
</tr>
<tr>
<td>Free carnitine (decreased level) is the primary analyte (C0, and C0/C16+C18 ratio decreased)</td>
<td>CUD</td>
</tr>
<tr>
<td>Acylcarnitine 3-hydroxy-butyryl carnitine (C4-OH) is the primary analyte</td>
<td>M/SCHAD</td>
</tr>
</tbody>
</table>

• Reporting Ranges****

Abnormal results reported by phone, letter, fax to physician of record or hospital contact unless otherwise specified.

Presumptive Positive

Immediate referral to pediatric metabolic specialist

Suspect Borderline Abnormal

Medical evaluation and repeat newborn specimen within one to two days; mark retest on specimen card. If retest remains abnormal, refer to metabolic specialist.

Suspect Acylcarnitine Abnormal due to TPN (reported by fax and letter)

If baby is still in NICU or on TPN, repeat newborn screen when off TPN 48 hours, at day 14 of life, or prior to discharge, whichever comes first. If baby has been discharged from hospital or was not on TPN at time of specimen collection, repeat newborn screen within one to two days. If retest remains abnormal, refer to metabolic specialist.
Feeding Effect

Hyperalimentation, TPN and certain medications may affect results. Unless otherwise instructed, repeat specimens are best collected 48 hours after TPN is discontinued.

Transfusion Effect

Specimen collection prior to transfusion is always recommended. If post-transfusion specimen collection is required, collection is best performed 48 hours post-transfusion.

Timing Effect

If specimen is collected at less than 24 hours of age, submit second sample during second day of life. If repeat screening is requested, collect and submit new specimen within one to two days.

Acylcarnitine levels tend to normalize very quickly in newborns once the baby begins to feed well; specimen collection as soon as possible after 24 hours of age is optimal and repeat specimens must be collected quickly to avoid false negative results for FAO disorders.

Specialist

Pediatric metabolic disease specialist, see Appendix for a list of Department /DSCC designated medical specialists.

Treatment

Treatment is disorder specific and usually includes frequent feeding and avoidance of fasting, high carbohydrate, low-fat diet and, in some cases, specialized medical formula, or supplements and medications. Special precautions, such as glucose monitoring and, in some cases, intravenous therapy may be required during intercurrent illnesses.

If indicated, the Department provides special medically necessary formula without charge to Illinois residents who are under comprehensive medical management provided by a metabolic disease specialist designated by the Department.
Fatty Acid Oxidation Disorders - Continued

Comments

*IBCD is categorized as an organic acid disorder in some reference materials.

**For substituted carnitines, a notation of (Cx) is used where (x) denotes the number of carbons in the fatty acid radical. Free carnitine is designated as (C0), acetyl carnitine as (C2), and propanoyl carnitine as (C3), etc. Hydroxylation is designated by (-OH), dicarboxylic acid is designated by (-DC), and unsaturation is designated by (:1). See Appendix for a complete listing of acylcarnitine analytes measured by the Department’s laboratory tandem mass spectrometry.

***A particular acylcarnitine pattern, or group of abnormal acylcarnitines may be detected by MS/MS screening; while not diagnostic, these patterns may be suggestive of a certain type of fatty acid oxidation disorder.

****For questions about the most current laboratory reporting values for these disorders, contact the Department’s Division of Laboratories at 312-793-4752.
Galactosemia

An autosomal recessive disorder of galactose metabolism, galactosemia is due to insufficient enzyme activity, usually of galactose-1-phosphate uridyl transferase (GALT) or, in some cases, deficiency of galactokinase or uridine diphosphate galactose-4-epimerase. In Illinois, newborn screening for galactosemia is designed to detect classical galactosemia due to GALT enzyme deficiency. These enzymes are necessary to convert galactose to glucose for energy and cellular growth. The main dietary source of galactose is lactose, the principle carbohydrate found in all forms of milk. Early detection and treatment of classical galactosemia is essential to prevent severe liver disease and complications including bleeding, overwhelming sepsis and death in the early neonatal period. See the Departments Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about these disorders and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

- **Incidence**
 One in 75,000 births (classical galactosemia)

- **Analyte Measured in Screening**
 Total galactose (free galactose and galactose-1-phosphate) and GALT enzyme activity are determined by fluorometric assay

- **Reporting Ranges***
 Abnormal results reported by phone, letter, fax to physician of record or hospital contact.

 - **Presumptive Positive**
 Total galactose > 6.5mg/dL with
 No GALT activity
 or
 Total galactose >19.5mg/dL with
 Normal GALT activity

 - **Suspect Borderline Abnormal**
 Total galactose ≥ 6.5mg/dL with
 Reduced GALT activity

- **Follow-up Referrals and Testing**
 Immediate referral to metabolic disease specialist for diagnostic testing and **change feeding to soy formula**; encourage breast feeding mothers to temporarily avoid nursing and use breast pump to maintain milk supply until metabolic specialist advises otherwise.

 Evaluate baby’s condition, collect repeat newborn screening specimen within one to two days; mark retest box and indicate the baby’s feeding type on the specimen card. If retest sample remains abnormal, refer to metabolic specialist.

- **Feeding Effect**
 Screening will be affected. Mark specimen collection form to indicate type of feeding.

- **Transfusion Effect**
 Screening is affected. Specimen should always be collected prior to transfusion, even if infant is younger than 24 hours of age. If initial specimen was collected post-transfusion a second specimen is required 48 hours post-transfusion and third specimen is required three months following the last transfusion.
Galactosemia - Continued

- **Timing Effect**: If specimen is collected at less than 24 hours of age, submit second sample during second day of life.

- **Treatment**: Soy or galactose-free formula and lactose free diet. Variant forms of galactosemia may or may not require dietary restrictions.

- **Specialist**: Pediatric metabolic disease specialist (Department/DSCC designated), see Appendix for the contact information.

Comments

Improper specimen collection or inappropriate shipping and handling, including exposure of the specimen to excessive heat, humidity and/or delayed submission may cause GALT enzyme degradation.

*The Department laboratory cut-off values are procedure dependent and are subject to periodic revision. For questions about the most current laboratory cut-off values for this disorder, contact the Department’s Division of Laboratories at 312-793-4752.

Transfusions may have long-term effects due to GALT enzyme activity of transfused red blood cells and may result in false negative screening for classical galactosemia.
Organic Acid Disorders

Organic acid disorders are autosomal recessive inherited metabolic conditions. Each organic acid disorder is associated with a specific enzyme deficiency that causes the accumulation of organic acids in blood and urine. The accumulated compounds or their metabolites are toxic, and may result in metabolic acidosis, hyperammonemia or ketotic hyperglycinemia. Usually infants with organic acid disorders appear normal at birth, but may develop vomiting, poor feeding, hypoglycemia, seizures, hypotonia and lethargy progressing to coma. Common features may include ketotic hyperglycinemia, metabolic acidosis and sometimes, an unusual odor. There is significant risk of death in infancy due to organic acid disorders; early diagnosis and treatment can greatly improve disease outcome. Minimization of ketoacidotic episodes improves prognosis and, during such episodes, aggressive treatment including administration of glucose may be warranted. See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about these disorders and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

In Illinois, newborn screening includes testing for a panel of acylcarnitines. Following is a list of the organic acid disorders that may be detected:

- Propionic acidemia (PA)
- Methylmalonic acidemia (MMA)
- Isovaleric acidemia (IVA)
- 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (3HMG)
- 3-methylglutaconic aciduria (3MGA)
- 3-methylcrotonyl CoA carboxylase deficiency (3-MCC)
- Glutaric acidemia, type 1 (GA 1)
- 2-methylbutyryl-CoA dehydrogenase deficiency (2MBCD)
- Malonic aciduria (MA)
- Betaketothiolase deficiency (BKT)
- Multiple carboxylase deficiency (MCD)

- Incidence
 - IVA - one in 50,000 births
 - 3MCC - one in 50,000 births
 - MMA - one in 100,000 births
 - GA1 - one in 110,000 births
 - PA, 3HMG, 3MGA, BKT, MCD, MA - all very rare, estimated at one in 100,000 to 500,000 births

- Analytes Measured in Screening
 - Specific acylcarnitines* measured by tandem mass spectrometry (MS/MS) in micro-Moles per Liter (uM/L)

Acylcarnitine

- 3-hydroxy-isovaleryl carnitine (C5-OH) is the primary analyte
- Pentanoyl carnitine (C5) is the primary analyte
- Propanoyl carnitine (C3) is the primary analyte

Possible Disorder

- 3MCC, 3HMG, 3MGA, MCD
- IVA/2MBCD
- MMA/PA
Organic Acid Disorders - Continued

Analytes

- Pentenoyl carnitine (C5:1) is the primary analyte
- Glutaryl carnitine (C5-DC) is the primary analyte
- Malonoyl carnitine (C3-DC) is the primary analyte

Disorder

- BKT
- GA1
- MA

Reporting Ranges**

Abnormal results reported by phone, letter and fax to physician of record or hospital contact unless otherwise specified.

Follow-up Referrals and Testing

Presumptive Positive

Immediate referral to pediatric metabolic specialist

Suspect Borderline Abnormal

Medical evaluation and repeat newborn screening specimen within one to two days; mark retest on specimen card. If retest sample remains abnormal, refer to metabolic specialist.

Suspect Amino Acid Abnormal due to TPN (reported by fax and letter)

If baby is still in NICU or on TPN repeat newborn screen when off TPN 48 hours, at day 14 of life, or prior to discharge, whichever comes first. If baby has been discharged from hospital or was not on TPN at time of specimen collection, repeat newborn screen within one to two days. If retest sample remains abnormal, refer to metabolic specialist.

Feeding Effect

Hyperalimentation and TPN may affect results. Unless otherwise instructed, repeat specimens are best collected 48 hours after TPN is discontinued.

Transfusion Effect

Specimen collection prior to transfusion is always recommended. If post-transfusion specimen collection is required, collection is best performed 48 hours post-transfusion.
Organic Acid Disorders - Continued

- **Timing Effect**: If specimen is collected at less than 24 hours of age, submit second sample during second day of life. If repeat screening is requested, collect and submit new specimen within one to two days.

- **Specialist**: Pediatric metabolic disease specialist (Department/DSCC designated), see Appendix for the contact information.

- **Treatment**: Treatment is disorder specific and may include low-protein diet and avoidance of fasting and, in some cases, specialized medical formula, or supplements and medications. Special precautions, such as close monitoring and in some cases, intravenous therapy may be required during intercurrent illness and introduction of new foods.

 If indicated, the Department provides special medical formula without charge to Illinois residents who are under comprehensive medical management provided by a metabolic disease specialist designated by the Department.

Comments

For substituted carnitines, a notation of (Cx) is used where (x) denotes the number of carbons in the fatty acid radical. Free carnitine is designated as (C0), acetyl carnitine as (C2), propanoyl carnitine as (C3), etc. Hydroxylation is designated by (-OH), dicarboxylic acid is designated by (-DC), and unsaturation is designated by (:1). See Appendix for a complete listing of acylcarnitine analytes measured by the Department laboratory tandem mass spectrometry.

For questions about the most current laboratory reporting values for these disorders, contact the Department’s Division of Laboratories at 312-793-4752.
Phenylketonuria

Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism resulting in excess levels of phenylalanine in body fluids. Hyperphenylalaninemia is usually due to a deficiency of the phenylalanine hydroxylase enzyme or, in some cases, impaired synthesis or recycling of biotin cofactor. Elevated levels of phenylalanine can become neurotoxic; early detection and treatment of hyperphenylalaninemia is necessary to prevent severe mental retardation. Phenylalanine is an essential amino acid, and individuals with PKU require careful dietary management and monitoring for life. Women of childbearing age who are diagnosed with PKU or hyperphenylalaninemia require strict dietary control prior to conception and throughout pregnancy to reduce their risk of pregnancy complications, including miscarriage, or of having an infant with severe birth defects due to high maternal levels of phenylalanine. See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about this disorder and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

- **Incidence**
 One in 10,000 births (Classical PKU)

- **Analytes Measured in Screening**
 Phenylalanine level and phenylalanine/tyrosine ratio measured by tandem mass spectrometry (MS/MS) in micro-Moles per Liter (uM/L).

- **Reporting Ranges**
 Abnormal results reported by phone, hospital contact unless otherwise specified.

 - **Presumptive Positive**
 Seriously elevated phenylalanine level and/or elevated phenylalanine/tyrosine ratio
 Immediate referral to PKU metabolic disease specialist

 - **Suspect Borderline Abnormal**
 Slightly elevated phenylalanine level
 Medical evaluation and repeat newborn screening specimen within one to two days; mark retest on specimen card. If retest sample remains abnormal, refer to metabolic specialist.

 - **Suspect Amino Acid Abnormal due to TPN (reported by letter and fax)**
 Slightly elevated phenylalanine level
 If baby is still in NICU or on TPN, repeat newborn screen when off TPN 48 hours, at day 14 of life, or prior to discharge, usually associated with TPN effects whichever comes first.

 If baby has been discharged from hospital or was not on TPN at time of specimen collection, repeat newborn screen within one to two days. If retest sample remains abnormal, refer to metabolic specialist.
Phenylketonuria - Continued

- **Feeding Effect**
 Laboratory detection of phenylalanine is not necessarily diet dependent. Screening is sensitive to catabolic activity occurring shortly after birth.
 TPN and hyperalimentation may cause false positive screening results.

- **Transfusion Effect**
 Specimen collection prior to transfusion is always recommended. If post-transfusion specimen collection is required, collection is best performed 48 hours post-transfusion.

- **Timing Effect**
 If specimen is collected at less than 24 hours of age, submit second sample during second day of life.

- **Specialist**
 Pediatric metabolic disease specialist (Department/DSCC designated), see Appendix for the contact information.

- **Treatment**
 Low phenylalanine diet consisting of specialized medically necessary formula in combination with foods that are low in phenylalanine.

 The Department provides PKU medically necessary formula without charge to Illinois residents who are under comprehensive medical management provided by a metabolic specialist designated by the Department/DSCC.

Comments

For questions about the most current laboratory reporting values for these disorders, contact the Department’s Division of Laboratories at 312-793-4752.
Sickling Hemoglobin Disorders, Alpha and Beta Thalassemias (FS, FSC, FSa, FNA, Bart’s)

This group of autosomal recessive hemoglobin disorders is characterized by production of abnormal forms of hemoglobin and no adult, or normal hemoglobin. In sickling diseases, this abnormal hemoglobin may be less stable, and may cause red blood cells to sickle after repeated de-oxygenation. Sickled cells may block blood vessels causing pain, stroke and other complications. The severity of the disorder varies greatly, but infants with sickle cell disease, sickle hemoglobin C disease, sickle beta thalassemia and beta thalassemia major are very susceptible to anemia, life-threatening infections and other complications. **Prophylactic penicillin by 2 months of age and adequate immunizations have been shown to greatly reduce morbidity and mortality associated with sickling hemoglobinopathies.** Infants and children diagnosed with alpha thalassemia or beta thalassemia major may experience severe anemia requiring blood transfusions and ongoing medical care best provided by pediatric hematologists or through the Comprehensive Thalassemia Center. See the Department Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about these disorders and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheet.

- **Incidence**

 Sickle cell disease occurs in one in 375 African Americans. Sickling hemoglobinopathies occur in all races and ethnic groups.

 Hemoglobin S is more common among individuals with West African, Middle Eastern, Mediterranean or Central Indian heritage.

 Hemoglobin C is more common among individuals with West African heritage.

 Hemoglobin E is more common among individuals with Mediterranean, African or Southeast Asian heritage.

 Thalassemias are more common among individuals with Mediterranean, African or Southeast Asian heritage, but do occur worldwide.

- **Analyte Measured in**

 Identification of types of hemoglobin present in the Screening sample is performed by high performance liquid chromatography (HPLC). This screening is not quantitative.

- **Reporting Classifications**

 Abnormal results reported letter, phone and fax to physician of record or hospital contact

 Follow-up Referrals/Testing

 Confirmatory diagnostic testing along with genetic counseling and education are necessary. Referral to pediatric hematologist for testing and genetic counseling services is highly recommended.
Sickling Hemoglobin Disorders, Alpha and Beta Thalassemias (FS, FSC, FSa, FNA, Bart’s) - Continued

- Reporting Classifications
 - FS - Fetal and sickle hemoglobins - probable SS sickle cell disease
 - FSC - Fetal and hemoglobin C - probable sickle hemoglobin C disease
 - FSa - Fetal, sickle and beta thalassemia hemoglobins - probable sickle/beta thalassemia
 - FNA - Fetal and no adult hemoglobin - probable beta thalassemia major
 - F-Bart’s - Fetal and Bart’s hemoglobin- probable alpha thalassemia/hemoglobin H disease

- Feeding Effect
 None

- Transfusion Effect
 Screening will be affected by transfusions. If initial specimen is collected post transfusion, repeat screening will be necessary three months after the last transfusion. Donor red blood cells may mask hemoglobin disorders due to presence of transfused adult hemoglobin. Specimens from transfused infants with disease conditions may have false negative results or results that falsely indicate carrier (trait) status.

- Timing Effect
 Usually no effect in first two weeks of newborn period, although older infants will have a gradual decrease in fetal hemoglobin.

 Bart’s hemoglobin levels decline rapidly during the neonatal period, and newborns with positive screens for possible alpha thalassemia/hemoglobin H disease require immediate diagnostic testing.*

- Specialist
 Pediatric hematologist, see Appendix for contact information. *Referral to the Comprehensive Thalassemia Center at Children’s Memorial Hospital is recommended for abnormal screens indicative of possible alpha thalassemia/hemoglobin H disease.

- Treatment
 Prophylactic penicillin is recommended for children with sickling disorders from ages 2 months to 5 years. In addition to all regular childhood immunizations, pneumococcal conjugate vaccine also is recommended to help prevent pneumococcal infections. While prophylactic penicillin is not usually indicated for treatment of thalassemias, these disorders are associated with severe anemia usually requiring medical management by a pediatric hematologist. Services are also available through the Comprehensive Thalassemia Center at Children’s Memorial Hospital.
Sickling Hemoglobin Disorders, Alpha and Beta Thalassemias (FS, FSC, FSA, FNA, Bart’s) - continued

Comments
Family education, genetic counseling and diagnostic services are available to families of infants with sickling hemoglobin disorders. The Illinois Department of Public Health, through grants to university-based medical clinics, provides diagnostic and treatment services for infants and children identified with hemoglobin disorders or traits. In addition, family counseling and educational services about sickling disorders are offered through the Sickle Cell Disease Association of Illinois.
Other Hemoglobinopathies and Traits

Hemoglobin traits and other less serious hemoglobin diseases are autosomal recessive disorders of hemoglobin production that usually do not require treatment. Individuals with these conditions produce adequate amounts of functional hemoglobin and usually do not have complications associated with the conditions. Visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheet for additional information.

Low fetal hemoglobin usually indicates that the infant was older at the time of specimen collection or, in newborns, that the infant was transfused. If the infant was transfused prior to collection of the initial newborn screening specimen, another specimen is required three months after the last transfusion, when the effects of donor red blood cells have dissipated.

- **Incidence**
 - Sickle cell trait occurs in one in 10 African Americans.
 - Hemoglobinopathies do occur in all races and ethnic groups.
 - Hemoglobin S is more common among individuals with West African, Middle Eastern, Mediterranean, or Central Indian heritage.
 - Hemoglobin C is more common among individuals with West African heritage.
 - Hemoglobin E is more common among individuals with Mediterranean, African or Southeast Asian heritage.
 - Thalassemias are more common among individuals with Mediterranean, African or Southeast Asian heritage, but do occur worldwide.

- **Analyte Measured**
 - Identification of types of hemoglobin present in the sample is performed by high performance liquid chromatography (HPLC). This screening is not quantitative.

- **Reporting Classifications**
 - (Reported by letter to physician of record or hospital contact)
 - Follow-up Referrals/Testing
 - Confirmatory testing, family education and genetic counseling services highly recommended.

Hemoglobin Disease Conditions not usually requiring treatment
- FD - Fetal and D hemoglobins – probable hemoglobin D disease*
- FE - Fetal and E hemoglobins – probable hemoglobin E disease*
- FX - Fetal and anomalously unidentified hemoglobin – unidentified hemoglobin disorder*

*Indicates these conditions are usually not required screening.
Reporting Classifications

Carrier Status
FAS - Fetal, adult and sickle hemoglobins - probable sickle cell carrier status
FAC - Fetal, adult hemoglobin C - probable hemoglobin C carrier status
FAD - Fetal, adult hemoglobin D - probable hemoglobin D carrier status
FAE - Fetal, adult and E hemoglobins - probable E hemoglobin carrier status

Other Hemoglobin Results
LFA - Low fetal and elevated adult hemoglobins - probable transfusion or older infant)

- **Feeding Effect** None
- **Transfusion Effect** Screening will be affected by transfusions. If initial specimen is collected post-transfusion, repeat screening is necessary three months after the last transfusion.
- **Timing Effect** No effect in first two weeks of life, although as the infant grows, the amount of fetal hemoglobin usually decreases.
- **Specialist** Pediatric hematologist, see Appendix for contact information
- **Treatment** Carrier status (hemoglobin traits) usually are considered benign with no treatment necessary

*Hemoglobin E and Hemoglobin D disease states should be verified by further diagnostic testing. Referral to the Comprehensive Thalassemia Center at Children’s Memorial Hospital for diagnostic testing is highly recommended for newborns with results indicating possible thalassemia disorders.

*Additional diagnostic testing through a pediatric hematologist is recommended for infants with results indicating an unidentified abnormal hemoglobin type.

Comments

Family education, genetic counseling and diagnostic services are available to all families of infants with sickling hemoglobin disorders or traits. The Illinois Department of Public Health, through grants to university-based medical clinics, provides diagnostic and treatment services for infants and children identified with hemoglobin disorders or traits. See Appendix for a listing of pediatric hematology specialists for information about these services. The Sickle Cell Disease Association of Illinois also will provide educational services to families of individuals with sickle cell diseases or carrier status.
Lysosomal Storage Diseases
(Statewide screening of newborns for lysosomal storage disorders is scheduled to begin in 2012.)

Lysosomal storage diseases are inherited metabolic conditions. Each disease is caused by deficiency of a specific enzyme related to the metabolism of lipids or glycogen. Of the lysosomal storage diseases included in the Illinois newborn screening panel, each disease causes accumulation of metabolites, primarily sphingolipids, or in the case of Pompe disease, harmful amounts of glycogen, in the lysosomes of cells. Over time, these accumulated lipids or glycogen deposits cause permanent cellular and tissue damage. Lysosomal disorders affect different organ systems including the brain and nervous system, liver, renal system, heart, skeletal muscles, lungs, spleen and bone marrow. Treatment options vary among the disorders, and are disease specific, but may include enzyme replacement therapy or stem cell transplantation. See the Department’s Web site, www.idph.state.il.us, for newborn screening fact sheets with additional information about this disorder and visit the American College of Medical Geneticists Web site at www.acmg.net to review the ACMG “ACT” sheets.

In Illinois, newborn screening includes testing for enzyme activity levels of specific lysosomal storage diseases. Following is a list of the lysosomal storage disorders that may be detected:

- Pompe
- Fabry
- Gaucher
- Krabbe
- Niemann-Pick

- Incidence
 These are rare disorders, actual incidence unknown. Estimated incidence of all lysosomal storage diseases is around one in 40,000 births.

- Analytes Measured in Screening
 Enzyme activity quantified by Enzyme activity microfluidic assay in micro-Moles per Liter per hour (µM/L/hour). Screening for Krabbe also includes DNA sequencing of the GALC gene.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Associated Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-glucosidase (GAA)</td>
<td>Pompe disease</td>
</tr>
<tr>
<td>Alpha-galactosidase (GLA)</td>
<td>Fabry disease</td>
</tr>
<tr>
<td>Acid beta-glucocerebrosidase (ABG)</td>
<td>Gaucher disease</td>
</tr>
<tr>
<td>Galactocerebrosidase (GALC)</td>
<td>Krabbe disease</td>
</tr>
<tr>
<td>Acid sphingomyelinase (ASM)</td>
<td>Niemann-Pick disease</td>
</tr>
</tbody>
</table>
Reporting Ranges
Abnormal results reported by phone, and fax to physician of record or hospital contact unless otherwise specified.

Follow-up Referrals and Testing
All positive screens require immediate referral to Department designated pediatric metabolic specialist for evaluation and diagnostic testing.

- **Feeding Effect**
 None

- **Transfusion Effect**
 Specimen collection prior to transfusion is always recommended. If post-transfusion specimen collection is required, collection is best performed 48 hours post-transfusion.

- **Timing Effect**
 If specimen is collected at less than 24 hours of age, submit second sample during second day of life.

- **Specialist**
 Pediatric metabolic disease specialist (Department/DSCC designated), see Appendix for the contact information.

- **Treatment**
 Treatment is disease specific.

 Pompe Disease
 Supportive treatment includes physical therapy. Enzyme replacement therapy is available.

 Fabry Disease
 Not typically treated during early childhood. Enzyme replacement therapy is available.

 Gaucher Disease
 Supportive, symptomatic care and monitoring by pediatric specialists. Enzyme replacement therapy is available for Gaucher type 1.

 Krabbe Disease
 Supportive, symptomatic care and monitoring by pediatric specialists. Some individuals may benefit from stem cell transplant within first 30 days of life.

 Niemann-Pick Disease
 Supportive, symptomatic care. Bone marrow transplants have been attempted and clinical trials of enzyme replacement therapy are under study.
Lysosomal Storage Diseases - Continued

Comments

*For questions about the most current laboratory reporting values for these disorders, contact the Department’s Division of Laboratories at 312-793-4752.

**Positive newborn screens for possible Krabbe disease require immediate referral to pediatric metabolic specialists at children’s hospitals with access to pediatric stem cell transplantation teams. See specialist list for Krabbe.
Appendices
Appendix A

Illinois Department of Public Health

Newborn Metabolic Screening

Specimen Collection Card
This flap should not touch blood spot when wet.

Dear Parent,

The Illinois Department of Public Health recommends that newborn screening be performed on all newborns within the first 48 hours of life to detect certain genetic disorders that may affect health and development. The Illinois Department of Public Health recommends that newborns be screened for the following genetic disorders:

- Metabolic disorders
- Cardiovascular disorders
- Neurological disorders
- Endocrine disorders
- Renal disorders
- Hematological disorders
- Ophthalmological disorders

The newborn screening test is a simple blood test performed on a sample of blood taken from the heel of the newborn baby. The sample is sent to a laboratory for analysis. If the test results are positive, the newborn will receive additional tests to determine the specific disorder and begin appropriate treatment.

The newborn screening test is a voluntary test, and parents have the right to decline it. However, if you do not wish your baby to be screened, you must provide written consent to the healthcare provider and notify the newborn screening program.

In case your baby needs another test or to be seen by specialists, if your baby is female, have your consent name and phone number in case your hospital and your baby's doctor have your consent name and phone number.

If you have any questions or concerns, please contact your healthcare provider or the Illinois Department of Public Health at 217-785-8100.

Sincerely,

[Name]
Appendix B

Illinois Department of Public Health

Division of Laboratories

Newborn Screening Specimen Report
Illinois Department of Public Health
2121 West Taylor Street
Chicago, IL 60612

Newborn Information:
Name:
BirthDate:
Sex:
Weight: g
Race:
BirthOrder:
Antibiotics:
NICU:
Transfused: N
BabyID:
Hospital #:

Physician/Other:

Mother's Information:
Name:
Address:
Phone:

Specimen Information:
Collection Date:
Age At Coll: hrs Gest:
Feeding Type:

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Analyte</th>
<th>Interpretation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotinidase Deficiency</td>
<td>Biotinidase</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Congenital Adrenal Hyperplasia</td>
<td>17-OHP</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Congenital Hypothyroidism*</td>
<td>TSH/T4</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis*</td>
<td>IRT/DNA</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Galactosemia</td>
<td>Total GAL/GALT</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Hemoglobinopathies</td>
<td>Hemoglobin</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Fatty Acid Disorders</td>
<td>Fatty Acids</td>
<td>Profile Negative</td>
<td></td>
</tr>
<tr>
<td>Amino Acid Disorders</td>
<td>Amino Acids</td>
<td>Profile Negative</td>
<td></td>
</tr>
<tr>
<td>Organic Acid Disorders</td>
<td>Acylcarnitines</td>
<td>Profile Negative</td>
<td></td>
</tr>
</tbody>
</table>

*Secondary test is only performed when primary test is Borderline or Positive.

The purpose of the Newborn Screening Program in Illinois is to identify infants at risk for certain congenital conditions and in need of more definitive testing. Abnormal results always require medical evaluation. Results can be affected by age at time of collection, feeding status, prematurity, low birth weight, transfusion, TPN, illness, medications and collection and handling techniques. As with any laboratory test, false positive or false negative results are possible. A negative screening result does not rule out the possibility of an underlying metabolic/genetic disease. Newborn screening test results are insufficient information on which to base diagnosis or treatment.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Results</th>
<th>Interpretation</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotinidase</td>
<td>Activity Present</td>
<td>Negative</td>
<td>Enzyme Activity Present</td>
</tr>
<tr>
<td>TSH</td>
<td>11.1 μU/mL</td>
<td>Negative</td>
<td>≤20 μU/mL</td>
</tr>
<tr>
<td>T4</td>
<td>No Results</td>
<td>No Results</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>17-OHP</td>
<td>5.8 ng/mL</td>
<td>Negative</td>
<td>≥3.0 and <30.0 ng/mL</td>
</tr>
<tr>
<td>IRT</td>
<td>13.6 ng/mL</td>
<td>Negative</td>
<td><170 ng/mL</td>
</tr>
<tr>
<td>DNA (CF)</td>
<td>No Results</td>
<td>No Results</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>TGAL</td>
<td>2.3 mg/dL</td>
<td>Negative</td>
<td><6.5 mg/dL</td>
</tr>
<tr>
<td>Gait/URidy Transferase</td>
<td>No Results</td>
<td>No Results</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>FA</td>
<td>FA</td>
<td>FA Hemoglobin Detected</td>
</tr>
<tr>
<td>Arg</td>
<td>5.810 μmol/L</td>
<td>Negative</td>
<td><40.0 μmol/L</td>
</tr>
<tr>
<td>Asa</td>
<td>0.010 μmol/L</td>
<td>Negative</td>
<td><0.08 μmol/L</td>
</tr>
<tr>
<td>Cit</td>
<td>9.810 μmol/L</td>
<td>Negative</td>
<td>≥3.0 and <30.0 μmol/L</td>
</tr>
<tr>
<td>Gly</td>
<td>403.930 μmol/L</td>
<td>Negative</td>
<td><850.0 μmol/L</td>
</tr>
<tr>
<td>Leu</td>
<td>90.150 μmol/L</td>
<td>Negative</td>
<td><260.0 μmol/L</td>
</tr>
<tr>
<td>Met</td>
<td>18.390 μmol/L</td>
<td>Negative</td>
<td><60.0 μmol/L</td>
</tr>
<tr>
<td>Orn</td>
<td>40.550 μmol/L</td>
<td>Negative</td>
<td><150.0 μmol/L</td>
</tr>
<tr>
<td>Phe</td>
<td>52.650 μmol/L</td>
<td>Negative</td>
<td><123.0 μmol/L</td>
</tr>
<tr>
<td>Tyr</td>
<td>48.440 μmol/L</td>
<td>Negative</td>
<td><260.0 μmol/L</td>
</tr>
<tr>
<td>Val</td>
<td>114.710 μmol/L</td>
<td>Negative</td>
<td><255.0 μmol/L</td>
</tr>
<tr>
<td>5Oxp</td>
<td>82.92 μmol/L</td>
<td>Negative</td>
<td><265.0 μmol/L</td>
</tr>
<tr>
<td>Co</td>
<td>17.960 μmol/L</td>
<td>Negative</td>
<td>≥7.5 and <66.4 μmol/L</td>
</tr>
<tr>
<td>C3</td>
<td>1.170 μmol/L</td>
<td>Negative</td>
<td><8.0 μmol/L</td>
</tr>
<tr>
<td>C3DC (C8 OH)</td>
<td>0.050 μmol/L</td>
<td>Negative</td>
<td><0.15 μmol/L</td>
</tr>
<tr>
<td>C4</td>
<td>0.350 μmol/L</td>
<td>Negative</td>
<td><1.0 μmol/L</td>
</tr>
<tr>
<td>C4DC</td>
<td>0.150 μmol/L</td>
<td>Negative</td>
<td><0.64 μmol/L</td>
</tr>
<tr>
<td>C4OH</td>
<td>0.260 μmol/L</td>
<td>Negative</td>
<td><0.7 μmol/L</td>
</tr>
<tr>
<td>C5</td>
<td>0.090 μmol/L</td>
<td>Negative</td>
<td><0.5 μmol/L</td>
</tr>
<tr>
<td>C5:1</td>
<td>0.020 μmol/L</td>
<td>Negative</td>
<td><0.1 μmol/L</td>
</tr>
<tr>
<td>C5DC (C10 OH)</td>
<td>0.060 μmol/L</td>
<td>Negative</td>
<td><0.18 μmol/L</td>
</tr>
<tr>
<td>C5OH</td>
<td>0.040 μmol/L</td>
<td>Negative</td>
<td><0.6 μmol/L</td>
</tr>
<tr>
<td>C6</td>
<td>0.0700 μmol/L</td>
<td>Negative</td>
<td><0.17 μmol/L</td>
</tr>
<tr>
<td>C6OH</td>
<td>0.030 μmol/L</td>
<td>Negative</td>
<td><0.15 μmol/L</td>
</tr>
<tr>
<td>C8</td>
<td>0.070 μmol/L</td>
<td>Negative</td>
<td><0.3 μmol/L</td>
</tr>
<tr>
<td>C10</td>
<td>0.150 μmol/L</td>
<td>Negative</td>
<td><0.4 μmol/L</td>
</tr>
<tr>
<td>C10:1</td>
<td>0.080 μmol/L</td>
<td>Negative</td>
<td><0.2 μmol/L</td>
</tr>
<tr>
<td>C10:2</td>
<td>0.010 μmol/L</td>
<td>Negative</td>
<td><0.1 μmol/L</td>
</tr>
<tr>
<td>C12</td>
<td>0.130 μmol/L</td>
<td>Negative</td>
<td><0.6 μmol/L</td>
</tr>
<tr>
<td>C14</td>
<td>0.210 μmol/L</td>
<td>Negative</td>
<td><0.7 μmol/L</td>
</tr>
<tr>
<td>C14:1</td>
<td>0.110 μmol/L</td>
<td>Negative</td>
<td><0.6 μmol/L</td>
</tr>
<tr>
<td>C14:2</td>
<td>0.030 μmol/L</td>
<td>Negative</td>
<td><0.1 μmol/L</td>
</tr>
<tr>
<td>C16</td>
<td>3.270 μmol/L</td>
<td>Negative</td>
<td><8.0 μmol/L</td>
</tr>
<tr>
<td>C16:1OH</td>
<td>0.030 μmol/L</td>
<td>Negative</td>
<td><0.15 μmol/L</td>
</tr>
<tr>
<td>C16OH</td>
<td>0.020 μmol/L</td>
<td>Negative</td>
<td><0.08 μmol/L</td>
</tr>
<tr>
<td>C18</td>
<td>1.110 μmol/L</td>
<td>Negative</td>
<td><2.2 μmol/L</td>
</tr>
<tr>
<td>C18:1</td>
<td>1.120 μmol/L</td>
<td>Negative</td>
<td><3.0 μmol/L</td>
</tr>
<tr>
<td>C18:1OH</td>
<td>0.020 μmol/L</td>
<td>Negative</td>
<td><0.08 μmol/L</td>
</tr>
<tr>
<td>C18OH</td>
<td>0.010 μmol/L</td>
<td>Negative</td>
<td><0.08 μmol/L</td>
</tr>
</tbody>
</table>

***17-OHP Ranges
Gestation Age and Weight Concentration
<56 WKS or >36 WKS and <50 ng/mL. Negative, <80 ng/mL. Borderline, >80 ng/mL. Positive
>56 WKS and/or >2000 g <50 ng/mL. Negative, <55 ng/mL. Borderline, >55 ng/mL. Positive

Illinois Department of Public Health, Newborn Screening Laboratory, 2121 W. Taylor St., Chicago, IL 60612
Appendix C

Illinois Department of Public Health

Newborn Metabolic Screening

Abnormal Screening Report Sample
NEWBORN SCREENING
OFFICE OF HEALTH PROMOTION
535 W. Jefferson St., 2nd Floor
Springfield, IL 62761
Phone: 217-785-8101
Fax: 217-557-5396

ABNORMAL NEWBORN SCREENING RESULT
Date Reported: 3/8/2011

Sent To:

Newborn Information:
Name:
A.K.A.:
Date of Birth:
Collection Date:
Repeat Specimen:
Medical Record #:
Facility: HOSPITAL

Laboratory Information:
Accession Number:
Sex:
Weight:
Transfused:
Feeding Type:
Accession Date:
Gestational Age (weeks):

Mother Information:

ABNORMAL SCREENING RESULT - Tyrosinemia
Tyrosine = 600.805 uM/L (Normal Range: <260.0 uM/L)

POSSIBLE AMINO ACID DISORDER. PLEASE IMMEDIATELY REFER THIS BABY TO A PEDIATRIC METABOLIC SPECIALIST FROM THE ENCLOSED LIST FOR EVALUATION AND DIAGNOSTIC TESTING. The clinician should immediately check on the clinical status of the baby; if left untreated, these conditions may result in significant disability, and ultimately, death.

If you are unable to contact this family, please call (217) 785-8101 and a member of the Newborn Screening Program will assist you.

Resources:
www.acmg.net (ACMG ACT sheets and algorithms)
www.idph.state.il.us (newborn screening information and fact sheets)
www.region4genetics.org (medical home and newborn screening resources)
The Division of Specialized Care for Children (DSCC) will cover diagnostic testing for any infant with a suspect newborn screening test for these disorders regardless of the family's financial eligibility if the testing is ordered by a physician on this list. DSCC requires other third party payers and insurers to be maximized when coverage is available.

November 2010
The Illinois Department of Public Health Newborn Screening Program

Medical Specialists for Biotinidase Deficiency/Galactosemia

<table>
<thead>
<tr>
<th>CHICAGO LOCATIONS</th>
<th>CHICAGO SUBURBAN LOCATIONS</th>
<th>ST. LOUIS LOCATIONS</th>
</tr>
</thead>
</table>
| CHILDREN'S MEMORIAL HOSPITAL
(773) 880-4462
2300 Children's Plaza, Box 59
Chicago, IL 60614
Barbara K. Burton, M.D.
Joel Charrow, M.D. | ADVOCATE MEDICAL CENTERS LUTHERAN GENERAL CHILDREN'S MEDICAL CENTER
(847) 723-7705
1875 Dempster St., Ste. 310
Park Ridge, IL 60068
Carol Booth, M.D.
Debra Rita, M.D. | CARDINAL GLENNON CHILDREN'S MEDICAL CENTER
(314) 577-5639
1465 S. Grand Blvd.
St. Louis, MO 63104-1095
Stephen Braddock, M.D.
Gary Gottesman, M.D. |
| JOHN A. STROGER JR. HOSPITAL OF COOK COUNTY
(312) 864-4158
1900 W. Polk, Rm. 1159
Chicago, IL 60612
Susan C. Echiverri, M.D. | CHILDREN'S PEDIATRIC SPECIALTY SERVICES
(773) 880-4462
2301 Enterprise Dr.
Westchester, IL 60154
Barbara K. Burton, M.D. | ST. LOUIS CHILDREN'S HOSPITAL
(314) 454-6093
660 S. Euclid Ave.
Campus Box 8116
St. Louis, MO 63110
Dorothy K. Grange, M.D.
Manwan Shinawi, M.D. |
| RUSH UNIVERSITY MEDICAL CENTER
(312) 942-6298
1750 W. Harrison St., Rm. 1507, Jelke
Chicago, IL 60612
Paul Wong, M.D., M.Sc. | COPLEY MEDICAL CENTER
(312) 942-6298
Fox Valley Medical Associates Bldg.
Rt. 3 at Fox Valley Center
Aurora, IL 60505
Paul Wong, M.D., M.Sc. | PEORIA LOCATION
UNIVERSITY OF ILLINOIS AT PEORIA
(312) 355-0732
420 N.E. Glen Oak Ave., Ste. 401
Peoria, IL 61603
George Hoganson, M.D. |
| THE UNIVERSITY OF ILLINOIS AT CHICAGO HOSPITALS
(773) 834-9110
5841 S. Maryland Ave., Ste. L161
Chicago, IL 60637
Darrel J. Waggoner, M.D. | NAPEROVILLE CLINIC
(312) 355-0732
1020 E. Ogden Ave., Ste. 302
Naperville, IL 60563
George Hoganson, M.D. | ROCKFORD LOCATION
ROCKFORD MEMORIAL HOSPITAL
(815) 971-5069
2400 N. Rockton Ave.
Rockford, IL 61103
George Hoganson, M.D. |
| THE UNIVERSITY OF ILLINOIS AT CHICAGO
(312) 355-0732
840 S. Wood St., Rm. 1217, M/C 856
Chicago, IL 60612-7311
George Hoganson, M.D.
Allen Horowitz, M.D. | LOYOLA UNIVERSITY MEDICAL CENTER
(708) 327-9085
2160 S. 1st Ave.
Maywood, IL 60153
Carolyn H. Jones, M.D. | SPRINGFIELD LOCATIONS
SIU MEDICAL SCHOOL/SIU PHYSICIANS & SURGEONS
(217) 545-4839
P.O. Box 19658
Springfield, IL 62794
Michael Schneider, M.D. |
| CHICAGO SUBURBAN LOCATIONS | RIVERSIDE MEDICAL CENTER
(312) 942-6298
350 N. Wall St.
Kankakee, IL 60901
Paul Wong, M.D., M.Sc. | SANGAMON COUNTY DEPARTMENT OF PUBLIC HEALTH
(312) 355-0732
2833 S. Grand Ave. East
Springfield, IL 62703
George Hoganson, M.D. |
| SAINT JOSEPH MEDICAL CENTER
(312) 942-6298
333 N. Madison St.
Joliet, IL 60435
Paul Wong, M.D., M.Sc. | ADVOCATE HOPE CHILDREN'S HOSPITAL
(312) 355-0732
4440 W. 95th St.
Oak Lawn, IL 60453
George Hoganson, M.D. | |
| POPLAR CREEK/HOFFMAN ESTATES
(847) 608-7517
1800 McDonough Rd., #203
Hoffman Estates, IL 60192
Paul Wong, M.D., M.Sc. | | |

The Division of Specialized Care for Children (DSCC) will cover diagnostic testing for any infant with a suspect newborn screening test for these disorders regardless of the family's financial eligibility if the test is ordered by a physician on this list. DSCC requires other third party payers and insurers to be maximized when coverage is available.

November 2010
The Division of Specialized Care for Children (DSCC) will cover diagnostic testing for any infant with a suspect newborn screening test for these disorders regardless of the financial eligibility of the family if tests are ordered by a physician on this list. DSCC requires other third party payers and insurers to be maximized when coverage is available.

November 2010
CHICAGO LOCATIONS

CHILDREN'S MEMORIAL HOSPITAL
(773) 327-7740
2300 Children’s Plaza
Chicago, IL 60614
Reema Habiby, M.D.
Mary Kreiter, M.D.

ADVOCATE MEDICAL CENTERS LUTHERAN GENERAL CHILDREN'S MEDICAL CENTER
(847) 723-9330
1775 Dempster St.
Park Ridge, IL 60068
Kanika Ghai, M.D.

CHICAGO SUBURBAN LOCATIONS (cont.)

PEORIA LOCATION
(309) 624-9600
2300 Children's Plaza (847) 723-9330
420 N.E. Glen Oak Ave.
Peoria, IL 61603
Sue Ellyn Sauder, M.D.
Joyce E. Wise, M.D.
Mauricio Flores, M.D.

RUSH UNIVERSITY MEDICAL CENTER CENTER PEDIATRIC SUBSPECIALTIES
(312) 942-8989 (708) 684-5670

CARDINAL GLENNON CHILDREN’S MEDICAL CENTER
1653 W. Congress Parkway
16151 Weber Road, Ste. 101
Chicago, IL 60612 Crest Hill, IL 60435
Richard A. Levy, M.D.
Fuad Ziai, M.D.

THE UNIVERSITY OF CHICAGO HOSPITALS
(773) 795-7993
5841 S. Maryland Ave.
Chicago, IL 60637
Dianne Deplewski, M.D.
Elizabeth Baumann-Littlejohn, M.D.

CENTER PEDIATRIC SUBSPECIALTIES
(708) 684-5670
4151 Naperville Road, Ste. 204
Lisle, IL 60532
Fuad Ziai, M.D.

CHICAGO SUBURBAN LOCATIONS

LOYOLA UNIVERSITY MEDICAL CENTER
(708) 216-8563
2160 S. 1st Ave., Bldg. 105, Rm. 3330
Maywood, IL 60153
Carla Minnuti, M.D.

ST. LOUIS LOCATIONS

THE UNIVERSITY OF ILLINOIS AT CHICAGO HOSPITAL
(312) 996-1682 or (312) 996-1795
840 S. Wood St., M/C 856
Chicago, IL 60612-7311
Songya Pang, M.D.
Diego Ize-Ludlow, M.D.

ELMHURST CLINIC
(630) 941-4710
1200 S. York Rd. #2000
Elmhurst, IL 60126-5634
Fuad Ziai, M.D.

ACADEMIC ENDOCRINE METABOLISM AND NUTRITION INC.
(630) 416-4501
2001 Gary Avenue, Ste. 240
Wheaton, IL 60187
W. Patrick Zeller, M.D.

JOHN H. STROGER JR. HOSPITAL OF COOK COUNTY
(312) 864-4172

Division of Genetics
1900 W. Polk St., Rm. 1159
Chicago, IL 60612
Vanessa Davis, M.D.

ENH MEDICAL GROUP: OLD ORCHARD
(847)- 663-8508
997 Woods Dr.
Skokie, IL 60077
Stephen C. Duck, M.D.

PEDIATRIC SUBSPECIALTY CLINIC
(309) 624-9600
2160 S. 1st Ave., Bldg. 105, Rm. 3330
Maywood, IL 60153
Carla Minnuti, M.D.

November 2010
Illinois Department of Public Health

Newborn Screening Program

Medical Specialists for Cystic Fibrosis

CHICAGO LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children's Memorial Hospital</td>
<td>2300 Children's Plaza, Box # 43</td>
<td>773-880-4462</td>
</tr>
<tr>
<td></td>
<td>Chicago, IL 60614</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Susanna McColley, M.D.</td>
<td></td>
</tr>
<tr>
<td>Rush University Medical Center</td>
<td>312-563-2270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1725 W. Harrison, Suite 710</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicago, IL 60612</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girish Sharma, M.D.</td>
<td></td>
</tr>
<tr>
<td>University of Chicago</td>
<td>773-702-6178</td>
<td></td>
</tr>
<tr>
<td>Children's Hospital</td>
<td>5841 S. Maryland Ave., MC 4064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicago, IL 60637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucille Lester, M.D.</td>
<td></td>
</tr>
<tr>
<td>University of Illinois</td>
<td>312-996-6714</td>
<td></td>
</tr>
<tr>
<td>At Chicago</td>
<td>1801 Taylor St., Clinic 2E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicago, IL 60637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucy Parks, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

CHICAGO SUBURBAN LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evanston Hospital</td>
<td>847-998-3434</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2650 Ridge Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evanston, IL 60201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stephen Boas, M.D.</td>
<td></td>
</tr>
<tr>
<td>St. Alexius Medical Center</td>
<td>847-998-3434</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1555 Barrington Rd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoffman Estates, IL 60169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stephen Boas, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

ADVOCATE CHRIST LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advocate Christ</td>
<td>Hope Children's Hospital</td>
<td>708-684-5810 or 708-684-5685</td>
</tr>
<tr>
<td></td>
<td>4440 W. 95th St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oak Lawn, IL 60453</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Javed Akhter, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

ADVOCATE LUTHERAN GENERAL LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advocate Lutheran General</td>
<td>Children’s Hospital</td>
<td>847-723-7705</td>
</tr>
<tr>
<td></td>
<td>1675 Dempster St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Park Ridge, IL 60068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabriel Aljadeff, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

PEORIA LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children’s Hospital of Illinois</td>
<td>309-624-9632 or 309-624-9627</td>
<td></td>
</tr>
<tr>
<td></td>
<td>320 E. Armstrong Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peoria, IL 61603</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jaylayne Lapke, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

CHAMPAIGN LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carle Clinic Association,</td>
<td>Department of Pediatrics</td>
<td>217-383-3100</td>
</tr>
<tr>
<td></td>
<td>Urbana, IL 61801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donald F. Davison, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

SOUTHERN ILLINOIS SCHOOL OF MEDICINE LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Illinois School of Medicine</td>
<td>217-545-0702</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. John’s Pavilion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>301 N. 8th St., P.O. Box 19658</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Springfield, IL 62794</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mark Johnson, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

ROCKFORD MEMORIAL HOSPITAL LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockford Memorial Hospital</td>
<td>815-971-5069</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Medical Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2400 N. Rockton Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rockford, IL 61103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>David Shoberg, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

St. Louis Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardinal Glennon Children's Hospital</td>
<td>314-268-6439</td>
<td></td>
</tr>
<tr>
<td>School of Medicine</td>
<td>1465 S. Grand Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO 63104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blakeslee Noyes, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

Washington University School of Medicine, Department of Pediatric Allergy and Pulmonary Medicine

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington University School of Medicine, Department of Pediatric Allergy and Pulmonary Medicine</td>
<td>314-454-2353</td>
<td></td>
</tr>
<tr>
<td></td>
<td>660 S. Euclid Ave., Campus Box 8116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO 63110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thomas Ferkol, M.D.</td>
<td></td>
</tr>
</tbody>
</table>

The Division of Specialized Care for Children (DSCC) will cover diagnostic testing for any infant with a suspect newborn screening test for these disorders regardless of the family’s financial eligibility if the testing is ordered by a physician on this list. DSCC requires other third party payers and insurers to be maximized when coverage is available.

November 2010
The Illinois Department of Public Health Newborn Screening Program

Pediatric Hematologists

CHICAGO LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
<th>Physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILDREN'S MEMORIAL HOSPITAL<sup>*</sup></td>
<td>2300 Children's Plaza, #30, Chicago, IL 60614</td>
<td>(773) 880-4125</td>
<td>Alexis Thompson, M.D.</td>
</tr>
<tr>
<td>JOHN A. STROGER JR. HOSPITAL OF COOK COUNTY<sup>*</sup></td>
<td>1900 W. Polk, Rm. 1136, Chicago, IL 60612</td>
<td>(312) 864-4168</td>
<td>Lisa Giordano, M.D.</td>
</tr>
<tr>
<td>MT. SINAI HOSPITAL<sup>*</sup></td>
<td>2720 W. 15th St., Rm. F444, Chicago, IL 60612</td>
<td>(773) 257-6892</td>
<td>Bruce Sharon, M.D.</td>
</tr>
<tr>
<td>RUSH UNIVERSITY MEDICAL CENTER<sup>*</sup></td>
<td>1753 W. Congress Parkway, Chicago, IL 60612</td>
<td>(312) 942-3034</td>
<td>Allen Korenblit, M.D., F.A.A.P.</td>
</tr>
<tr>
<td>THE UNIVERSITY OF CHICAGO/ LARABIDA CHILDREN'S HOSPITAL SICKLE CELL PROGRAM<sup>*</sup></td>
<td>East 65th St @Lake Michigan, Chicago, IL 60649</td>
<td>(773) 256-5759</td>
<td>Uma Subramanian, M.D.</td>
</tr>
<tr>
<td>THE UNIVERSITY OF ILLINOIS AT CHICAGO HOSPITAL<sup>*</sup></td>
<td>840 S. Wood St., MC 856, Chicago, IL 60612-7324</td>
<td>(312) 996-6143</td>
<td>Ruth Seeler, M.D.</td>
</tr>
</tbody>
</table>

CHICAGO SUBURBAN LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
<th>Physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVOCATE HOPE CHILDREN'S HOSPITAL<sup>*</sup></td>
<td>4440 W. 95th St., Oak Lawn, IL 60453</td>
<td>(708) 684-4094</td>
<td>Sharad Salvi, M.D.</td>
</tr>
<tr>
<td>JOHN A. STROGER JR. HOSPITAL OF COOK COUNTY<sup>*</sup></td>
<td>2300 Children's Plaza, #30, Chicago, IL 60614</td>
<td>(773) 880-4125</td>
<td>Jason Canner, M.D.</td>
</tr>
<tr>
<td>ADVOCATE MEDICAL CENTERS LUTHERAN GENERAL CHILDREN'S MEDICAL CENTER</td>
<td>1675 Dempster St., Park Ridge, IL 60068</td>
<td>(847) 318-9330</td>
<td>William Goodell, M.D.</td>
</tr>
<tr>
<td>LOYOLA UNIVERSITY MEDICAL CENTER</td>
<td>2160 S. 1st Ave., Maywood, IL 60153</td>
<td>(708) 216-8563</td>
<td>Ricarchito Manera, M.D.</td>
</tr>
<tr>
<td>CENTRAL DUPAGE HOSPITAL</td>
<td>25 N. Winfield Rd., Winfield, IL 60190</td>
<td>(630) 933-6631</td>
<td>Ammar Hayani, M.D.</td>
</tr>
<tr>
<td>CHILDREN'S HOSPITAL OF ILLINOIS AT O.S.F. ST. FRANCIS MEDICAL CENTER<sup>*</sup></td>
<td>530 N.E. Glen Oak Ave., Peoria, IL 61637</td>
<td>(309) 624-4945</td>
<td>Stephen D. Smith, M.D.</td>
</tr>
</tbody>
</table>

EAST ST. LOUIS LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
<th>Physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUTHERN IL HEALTH CARE FOUNDATION MOTHER CHILD CENTER<sup>*</sup></td>
<td>6000 Bond Avenue, Centerville, IL 62207</td>
<td>(618) 332-274</td>
<td>William Ferguson, M.D.</td>
</tr>
</tbody>
</table>

ST. LOUIS LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
<th>Physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARDINAL GLENNON CHILDREN'S MEDICAL CENTER<sup>*</sup></td>
<td>1465 S. Grand Blvd., St. Louis, MO 63104-1095</td>
<td>(314) 577-5600</td>
<td>William Ferguson, M.D.</td>
</tr>
<tr>
<td>ST. LOUIS CHILDREN'S HOSPITAL<sup>*</sup></td>
<td>2160 S. 1st Ave., Brandon Triplett, M.D.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAMPAIGN LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
<th>Physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE UNIVERSITY OF CHICAGO/ LARABIDA CHILDREN'S HOSPITAL SICKLE CELL PROGRAM<sup>*</sup></td>
<td>East 65th St @Lake Michigan, Chicago, IL 60649</td>
<td>(773) 256-5759</td>
<td>MaryLou Schmidt, M.D.</td>
</tr>
<tr>
<td>THE UNIVERSITY OF ILLINOIS AT CHICAGO HOSPITAL<sup>*</sup></td>
<td>840 S. Wood St., MC 856, Chicago, IL 60612-7324</td>
<td>(312) 996-6143</td>
<td>Bruce Sharon, M.D.</td>
</tr>
</tbody>
</table>

PEORIA LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
<th>Physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILDREN'S HOSPITAL OF ILLINOIS AT O.S.F. ST. FRANCIS MEDICAL CENTER<sup>*</sup></td>
<td>530 N.E. Glen Oak Ave., Peoria, IL 61637</td>
<td>(309) 624-4945</td>
<td>Mohamad Al-Rahawan, M.D.</td>
</tr>
</tbody>
</table>

SPRINGFIELD LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
<th>Physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIU MEDICAL SCHOOL/SIU PHYSICIANS & SURGEONS</td>
<td>415 N. 9th St.</td>
<td>(217) 545-7377</td>
<td>Gregory Brandt, M.D.</td>
</tr>
</tbody>
</table>

*Centers receiving funding from the Illinois Department of Public Health

November 2010
Illinois Department of Public Health Newborn Screening Program
Medical Specialists for Lysosomal Storage Disorders
Pompe, Fabry, Gaucher and Niemann-Pick Diseases

CHICAGO LOCATIONS

CHILDREN'S MEMORIAL HOSPITAL
(773) 880-4462
2300 Children's Plaza, Box 59
Chicago, IL 60614
Barbara K. Burton, M.D.
Joel Charrow, M.D.

PEORIA LOCATION

UNIVERSITY OF ILLINOIS AT PEORIA
(312) 355-0732
420 N.E. Glen Oak Ave., Ste. 401
Peoria, IL 61603
George Hoganson, M.D.

RUSH UNIVERSITY MEDICAL CENTER
(312) 942-6298
1750 W. Harrison St., Rm. 1507, Jelke
Chicago, IL 60612
Paul Wong, M.D., M.Sc.

THE UNIVERSITY OF ILLINOIS AT CHICAGO HOSPITALS
(773) 834-9110
5841 S. Maryland Ave., Ste.L161, M/C 0077
Chicago, IL 60637
Specialist: Darrel J. Waggoner, M.D.

THE UNIVERSITY OF CHICAGO
(312) 355-0732
840 S. Wood St., Rm. 1215, M/C 856
Chicago, IL 60612-7311
George Hoganson, M.D.

ST. LOUIS LOCATIONS

CARDINAL GLENNON CHILDREN'S MEDICAL CENTER
(314) 577-5639
1465 S. Grand Blvd.
St. Louis, MO 63104-1095
Stephen Braddock, M.D.
Gary Gottesman, M.D.

ST. LOUIS CHILDREN'S HOSPITAL
(314) 454-6093
660 S. Euclid Ave.
Campus Box 8116
St. Louis, MO 63110
Dorothy K. Grange, M.D.
Marwan Shinawi, M.D.

CHICAGO SUBURBAN LOCATIONS

ADVOCATE HOPE CHILDREN'S HOSPITAL
(312) 355-0732
4440 W. 95th St.
Oak Lawn, IL 60453
George Hoganson, M.D.

CHILDREN'S PEDIATRIC SPECIALTY SERVICES
(773) 880-4462
2301 Enterprise Dr.
Westchester, IL 60154
Barbara K. Burton, M.D.

NAPERVILLE CLINIC
(312) 355-0732
1020 E. Ogden Ave., Ste. 302
Naperville, IL 60563
George Hoganson, M.D.
Illinois Department of Public Health Newborn Screening Program
Medical Specialists for Lysosomal Storage Disorders
Krabbe Disease

CHICAGO LOCATIONS

CHILDREN'S MEMORIAL HOSPITAL
(773) 880-4462
2300 Children's Plaza, Box 59
Chicago, IL 60614
Barbara K. Burton, M.D.
Joel Charrow, M.D.

THE UNIVERSITY OF CHICAGO HOSPITALS
(773) 834-9110
5841 S. Maryland Ave., Ste.L161, M/C 0077
Chicago, IL 60637
Darrel J. Waggoner, M.D.

ST. LOUIS LOCATION

ST. LOUIS CHILDREN'S HOSPITAL
(314) 454-6093
660 S. Euclid Ave.
Campus Box 8116
St. Louis, MO 63110
Dorothy K. Grange, M.D.
Marwan Shinawi, M.D.

CARDINAL GLENNON CHILDREN'S MEDICAL CENTER
(314) 577-5639
1465 S. Grand Blvd.
St. Louis, MO 63104-1095
Stephen Braddock, M.D.
Gary Gottesman, M.D.

November 2010
Appendix E

Illinois Local Public Health Department Contacts
<table>
<thead>
<tr>
<th>Adams County Health Department</th>
<th>Bond County Health Department</th>
<th>Boone County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candee Musgrove, R.N.</td>
<td>Judi Markell, RN, BSN</td>
<td>Chris McKibben, RN</td>
</tr>
<tr>
<td>330 Vermont St.</td>
<td>MCH Coordinator</td>
<td>1204 Logan Avenue</td>
</tr>
<tr>
<td>Quincy, IL 62301</td>
<td>503 S. Prairie</td>
<td>Belvidere, IL 61008-4031</td>
</tr>
<tr>
<td>Phone: 217.222.8440 ext 121</td>
<td>Greenville, IL 62246</td>
<td>Phone: 815.544.2951</td>
</tr>
<tr>
<td>Fax: 217.222.8508</td>
<td>Phone: 618.664.1442, x 136</td>
<td>Fax: 815.544.2050</td>
</tr>
<tr>
<td></td>
<td>Fax: 618.664.1744</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brown County Health Department</th>
<th>Bureau County Health Department</th>
<th>Calhoun County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nancy Kropp, R.N.</td>
<td>Deb Piper, R.N.</td>
<td>Sandy Teichmann, R.N.</td>
</tr>
<tr>
<td>111 W. Washington</td>
<td>526 Bureau Valley Pkwy., Perry Plaza</td>
<td>P. O. Box 158</td>
</tr>
<tr>
<td>Mount Sterling, IL 62353</td>
<td>Princeton, IL 61356</td>
<td>Hardin, IL 62047</td>
</tr>
<tr>
<td>Phone: 217.773.2714</td>
<td>Phone: 815.872.5091</td>
<td>Phone: 618.576.2428</td>
</tr>
<tr>
<td>Fax: 817.773.2425</td>
<td>Fax: 815.872-5092</td>
<td>Fax: 618.576.9808</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carroll County Health Department</th>
<th>Cass County Health Department</th>
<th>Champaign-Urbana Public Health District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sally Marken, R.N.</td>
<td>Jamie Epping, RN, MCH Director</td>
<td>Cathy Ito, R.N., MCH Division</td>
</tr>
<tr>
<td>FCM Coordinator/APORS</td>
<td>331 S. Main Street</td>
<td>201 W. Kenyon Road</td>
</tr>
<tr>
<td>822 S. Mill Street</td>
<td>Virginia, IL 62691</td>
<td>Champaign, IL 61820</td>
</tr>
<tr>
<td>Mt. Carroll, IL 61053</td>
<td>Phone: 217.452.2182</td>
<td>Phone: 217.531.4311</td>
</tr>
<tr>
<td>Phone: 815.244.8855</td>
<td>Fax: 217.452.7245</td>
<td>Fax: 217.352.0126</td>
</tr>
<tr>
<td>Fax: 815.244.5010</td>
<td></td>
<td>Andrea Taylor, RN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amy Walker, RN – followup for SIDS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phone: 531-4283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fax: 531-4297</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chicago Department of Public Health (covering City of Chicago)</th>
<th>Christian County Health Department</th>
<th>Clark County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cecelia Libunao, RN Central Contact</td>
<td>Tracie Riggs, R.N.</td>
<td>Barbara Reedy, R.N.</td>
</tr>
<tr>
<td>DePaul University Center</td>
<td>MCH Coordinator</td>
<td>1001 North York Street</td>
</tr>
<tr>
<td>333 S. State St., Second Floor</td>
<td>902 W. Springfield Road</td>
<td>Martinsville, IL 62442</td>
</tr>
<tr>
<td>Chicago, IL 60604</td>
<td>Taylorville, IL 62568</td>
<td>Phone: 217.382.4207</td>
</tr>
<tr>
<td>Phone: 312-747-9690</td>
<td>Phone: 217.824.4113x114</td>
<td>Fax: 217.382.4226</td>
</tr>
<tr>
<td>Fax: 312-747-9694</td>
<td>Fax: 217.824.4380</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clay County Health Department</th>
<th>Clinton County Health Department</th>
<th>Coles County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nancy Wiley, R.N.</td>
<td>Janice Albers, R.N.</td>
<td>Jill Temple, R.N.</td>
</tr>
<tr>
<td>P. O. Box 579, 601 E. 12th Street</td>
<td>930-A Fairfax Street</td>
<td>P. O. Box 1064, 825 18th St.</td>
</tr>
<tr>
<td>Flora, IL 62839</td>
<td>Carlyle, IL 62231</td>
<td>Charleston, IL 61920-9391</td>
</tr>
<tr>
<td>Phone: 618.662.4406</td>
<td>Phone: 618.594.2723</td>
<td>Phone: 217.348.0530</td>
</tr>
<tr>
<td>Fax: 618.662.2801</td>
<td>Fax: 618.594.3225</td>
<td>Fax: 217.348.5322</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cook County Department of Public Health</th>
<th>(Cook County con’t) Evanston Health Department</th>
<th>(Cook County Con’t) Oak Park Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeanne Taverne, R.N.</td>
<td>Will be covered by Cook County as of 7/1/07</td>
<td>Catherine Amato, R.N.B.S.N.</td>
</tr>
<tr>
<td>1701 S. First Ave., 1st floor</td>
<td></td>
<td>1 Village Hall Plaza</td>
</tr>
<tr>
<td>Maywood, IL 60153</td>
<td></td>
<td>Oak Park, IL 60302</td>
</tr>
<tr>
<td>Phone: 708.786.4054</td>
<td></td>
<td>Phone: 708.358.5428</td>
</tr>
<tr>
<td>Fax: 708-786-4001</td>
<td></td>
<td>Fax: 708.358.5552</td>
</tr>
<tr>
<td>(Cook County Con’t)</td>
<td>Skokie Health Department</td>
<td>(Cook County cont)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Susan A Reisberg, R.N.</td>
<td>Susan A Reisberg, R.N.</td>
<td>Pat Englehart, R.N.</td>
</tr>
<tr>
<td>Skokie, IL 60077</td>
<td>Skokie, IL 60077</td>
<td>5635 State Road</td>
</tr>
<tr>
<td>Phone: 847.933.8252 x 4237</td>
<td>Phone: 847.933.8252 x 4237</td>
<td>Burbank, IL 60459</td>
</tr>
<tr>
<td>Fax: 847.673.8606</td>
<td>Fax: 847.673.8606</td>
<td>Phone: 708.424-9200 x 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fax: 708-499-5427</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cumberland County Health Department</th>
<th>DeKalb County Health Department</th>
<th>DeWitt-Piatt Bi-County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jessica Ryder, R.N.</td>
<td>Kay Chase, R.N.</td>
<td>Ann Barnett, R.N., B.S.N.</td>
</tr>
<tr>
<td>MCH Coordinator</td>
<td>FCM/WIC Program Coordinator</td>
<td>DeWitt-Piatt Bi-County Health Department</td>
</tr>
<tr>
<td>P. O. Box 130, N.E. Corner of Square</td>
<td>2550 North Annie Glidden Road</td>
<td>P. O. Box 518, 910 Route 54 East</td>
</tr>
<tr>
<td>Skokie, IL 62468</td>
<td>DeKalb, IL 60115</td>
<td>Clinton, IL 61727</td>
</tr>
<tr>
<td>Phone: 217-849-3211</td>
<td>Phone: 815.748-2438</td>
<td>Phone: 217.935.3427</td>
</tr>
<tr>
<td>Fax: 217.253.3421.</td>
<td>Fax: 815.748.2447</td>
<td>Fax: 217.935.4037</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Douglas County Health Department</th>
<th>DuPage County Health Department</th>
<th>East Side Health District (ESHD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Hays, R.N.</td>
<td>Doris Feery R.N.</td>
<td>Lynn Shelton, R.N.</td>
</tr>
<tr>
<td>Director of Nursing</td>
<td>111 N. County Farm Road</td>
<td>636 N. 20th St.</td>
</tr>
<tr>
<td>Douglas County Health Department</td>
<td>Wheaton, IL 60187</td>
<td>East St. Louis, IL 62206</td>
</tr>
<tr>
<td>1250 E. U.S. Highway 36</td>
<td>630-682-7979 Ext. 7128</td>
<td>Phone: 618.8740.4713 x 239</td>
</tr>
<tr>
<td>Tuscola, IL 61953</td>
<td>Fax: 630-462-9085</td>
<td>Fax: 618.874.4737</td>
</tr>
<tr>
<td>Phone: 217.253.4137</td>
<td></td>
<td>(E. St. Louis, Washington Park, Fairmount City, SW area of Caseyville, Cahokia, Alorton, Centreville, Sauget, Brooklyn, Lovejoy)</td>
</tr>
<tr>
<td>Fax: 217.253.3421.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edgar County Health Department</th>
<th>Effingham County Health Department</th>
<th>Egyptian County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carol Cline</td>
<td>Shawn Bourland, R.N.</td>
<td>Casey Carlile, R.N.</td>
</tr>
<tr>
<td>502 Shaw Avenue</td>
<td>P. O. Box 685, 901 W. Virginia</td>
<td>1412 U.S. 45 North</td>
</tr>
<tr>
<td>Paris, IL 61944</td>
<td>Effingham, IL 62401</td>
<td>Eldorado, IL 62930-9324</td>
</tr>
<tr>
<td>Phone: 217.465.2212, x 236</td>
<td>Phone: 217.342.9237</td>
<td>Phone: 618.273.3326</td>
</tr>
<tr>
<td>Fax: 217.465.1121</td>
<td>Fax: 217.342.9324</td>
<td>Fax: 618.273.2808</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evanston Health Department</th>
<th>Fayette County Health Department</th>
<th>Ford-Iroquois Public Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Cook County</td>
<td>Becky Pryor (Thompson), R.N.</td>
<td>Marilyn Schaumburg, R.N.</td>
</tr>
<tr>
<td></td>
<td>416 W. Edwards St.</td>
<td>Director of Nursing</td>
</tr>
<tr>
<td></td>
<td>Vandalia, IL 62471</td>
<td>114 N. Third Street</td>
</tr>
<tr>
<td></td>
<td>Phone : 618.283.1044</td>
<td>Watseka, IL 60970</td>
</tr>
<tr>
<td></td>
<td>Fax : 618.283.5038</td>
<td>Phone: 815.432.2483x127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fax: 815.432.2198</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Franklin-Williamson Bi-County Health Department</th>
<th>Fulton County Health Department</th>
<th>Greene County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisa Sorenson, R.N.</td>
<td>Louise Hiett, RN, BSN</td>
<td>Ruth Ann Flowers, R.N., B.S., Public Health Administrator</td>
</tr>
<tr>
<td>Williamson Co. Airport, 120 Express Drive</td>
<td>Maternal Child Health Programs Manager</td>
<td>310 Fifth St.</td>
</tr>
<tr>
<td>Marion, IL 62959-9808</td>
<td>700 E Oak</td>
<td>Carrollton, IL 62016</td>
</tr>
<tr>
<td>Phone: 618.993.8111 x 226</td>
<td>Canton, IL 61520</td>
<td>Phone: 217.942.6961or 6962</td>
</tr>
<tr>
<td>Fax: 618.993.6455</td>
<td>Phone: 309.647.1134 x 271</td>
<td>Fax: 217.942.3904</td>
</tr>
<tr>
<td></td>
<td>Fax: 309.647.9545</td>
<td></td>
</tr>
<tr>
<td>Grundy County Health Department</td>
<td>Hamilton County Health Department</td>
<td>Hancock County Health Department</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Kay Lynn Shumaker, R.N.</td>
<td>LaDonna Lasater, R.N.</td>
<td>Vicki Hendrickson, R.N./Jennifer Sherman, R.N.</td>
</tr>
<tr>
<td>Director of Nursing</td>
<td>County Courthouse, Room 5</td>
<td>P. O. Box 357, 671 Wabash</td>
</tr>
<tr>
<td>1320 Union St.</td>
<td>McLeansboro, IL 62859</td>
<td>Carthage, IL 62321</td>
</tr>
<tr>
<td>Morris, IL 60450</td>
<td>Phone: 618.643.3522</td>
<td>Phone: 217.357.2171</td>
</tr>
<tr>
<td>Phone: 815.941.3117</td>
<td>Fax: 618.643.2390</td>
<td>Fax: 217.357.3562</td>
</tr>
<tr>
<td>Fax: 815.941.2389</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Henderson County Health Department</th>
<th>Henry County Health Department (also covers Stark County)</th>
<th>Jackson County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Lynne Haase, R.N., Family Case Mgt</td>
<td>Sandy Sommer, R.N. 4424 U.S. Highway 34 Kewanee, IL 61433</td>
<td>Marilyn Twitty, RN, Genetic Coordinator 618-684-3143x111</td>
</tr>
<tr>
<td>P. O. Box 220 Gladstone, IL 61437-0220</td>
<td>Phone: 309.852.0197 Fax: 309.852.0595</td>
<td>Christy Guy, RN (For SIDS cases) 415 Health Department Road P. O. Box 307 Murphysboro, IL 62966</td>
</tr>
<tr>
<td>Phone: 309.627.2812 Fax: 309.627.2793</td>
<td></td>
<td>Phone: 618.684.3143 x 145 Fax: 618.687.1255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jasper County Health Department (also covers Richland County)</th>
<th>Jefferson County Health Department</th>
<th>Jersey County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deborah Riddle, R.N. 106 Edwards St. Newton, IL 62448 Phone: 618.783.4436 Fax: 618.783.4146</td>
<td>Becky Brooks, R.N., Director of Nurses #1 Doctors Park Road, Suite F Mt. Vernon, IL 62864-6213</td>
<td>Geri Daniels, R.N., B.S.N. 1307 State Highway 109 Jerseyville, IL 62052</td>
</tr>
<tr>
<td>Phone: 618.783.4436 Fax: 618.783.4146</td>
<td>Phone: 618.244.7134 Fax: 618.244.2640</td>
<td>Phone: 618.498.9565 Fax: 618.498.6291</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JoDaviess County Health Department</th>
<th>Kane County Health Department</th>
<th>Kankakee County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeanette Dahquist, RN, BSN 9483 U.S. Rt. 20 West P. O. Box 318 Galena, IL 61036 Phone: 815.777.0263 Fax: 815.777.2977</td>
<td>Grace Rubia, R.N. 1240 N. Highland Ave. Aurora, IL 60506 Phone: 630-264-7683 Fax: 630-897-8138</td>
<td>Glynis (Gilbert) Cailteux, R.N. Family Case Mgt. Coordinator 2390 W. Station Kankakee, IL 60901</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phone: 815.802-9324 Fax: 815-802-9321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kendall County Dept. Of Health</th>
<th>Knox County Health Department</th>
<th>Lake County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noreen Transier, R.N., Director of Nursing 811 W. John Street Yorkville, IL 60560-9249 Phone: 630.553.9100 x 124 Fax: 630.553.0167</td>
<td>Rhonda Peterson, R.N. 1361 W. Fremont St Galesburg, IL 61401 Phone: 309.344.2224 Fax: 309.344.5049</td>
<td>Carmen Perez, R.N. 3010 Grand Ave. Waukegan, IL 60085</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phone: 847.377.8128 Fax: 847.782.6101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LaSalle County Health Dept</th>
<th>Lawrence County Health Department</th>
<th>Lee County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colleen Gibson, Genetics Coordinator 717 Etna Road Ottawa, IL 61350 Phone: 815.433.3366 Fax: 815.433.9522 SIDS: Cathy Larsen, R.N</td>
<td>Phyllis Wells, R.N., M.S.N.,C.N.S. R.R. #3, Box 414 POB 516 Lawrenceville, IL 62439 Phone: 618.943.3302 Cell: 618-943-9995 Fax: 618.943.7589</td>
<td>Kathy Schutz, R.N. 309 S. Galena Avenue, Suite 100 Dixon, IL 61021-9185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phone: 815.284.3371 x 116 Fax: 815.288.1811</td>
</tr>
<tr>
<td>Livingston County Health Dept.</td>
<td>Logan County Health Department</td>
<td>Macon County Health Department</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Jackie Dever, RN, DON</td>
<td>Dianna Heyer, RN</td>
<td>Debra Durbin, R.N.</td>
</tr>
<tr>
<td>Livingston Co. Health & Education Bldg.</td>
<td>Asst. Administrator/Director of Nursing</td>
<td>1221 E. Condit Street</td>
</tr>
<tr>
<td>P O. Box 650, 310 E. Torrance Ave.</td>
<td>Logan County Health Department</td>
<td>Decatur, IL 62521-1405</td>
</tr>
<tr>
<td>Pontiac, IL 61764</td>
<td>109 Third Street, P.O.Box 508</td>
<td>Phone 217.423.6988 x1317</td>
</tr>
<tr>
<td>Phone : 815.844.7174 x228</td>
<td>Lincoln, Illinois 62656-0508</td>
<td>Fax : 217-423-5079</td>
</tr>
<tr>
<td>Fax : 815.842.2408</td>
<td>Phone: 217-735-2317 x 234</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: 217-732-6943</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Macoupin County Health Department</th>
<th>Madison County Health Dept.</th>
<th>Marion County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Hazzard, R.N.</td>
<td>Becci Weirich, R.N.</td>
<td>Dena Kemp., R.N.</td>
</tr>
<tr>
<td>805 N. Broad St.</td>
<td>101 E. Edwardsville</td>
<td>1013 N. Poplar St</td>
</tr>
<tr>
<td>Carlinville, IL 62626</td>
<td>Wood River, IL 62095</td>
<td>Centralia, IL 62801</td>
</tr>
<tr>
<td>Phone: 217.854.3223, x 234</td>
<td>Phone: 618.296.6062</td>
<td>Phone: 618-532-6518 x 2227</td>
</tr>
<tr>
<td>Fax: 217.854.3225</td>
<td>Fax: 618.251.9482</td>
<td>Fax: 618.532.6543</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marshall County Health Department</th>
<th>Mason County Health Department</th>
<th>McDonough County Health Dept.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathleen King, R.N.</td>
<td>Theresa Sexton, R.N., Family Case Mgt.</td>
<td>Lynn VanPelt, R.N.</td>
</tr>
<tr>
<td>319 Sixth Street. P. O. Box 156</td>
<td>P. O. Box 557, Route 136 East</td>
<td>505 E. Jackson Street</td>
</tr>
<tr>
<td>Lacon, IL 61604</td>
<td>Havana, IL 62644</td>
<td>Macomb, IL 61455</td>
</tr>
<tr>
<td>Phone: 309.246-8074</td>
<td>Phone: 309.543.2201 x 244</td>
<td>Phone: 309.837.9951</td>
</tr>
<tr>
<td>Fax: 309.246-3787</td>
<td>Fax: 309.543.2063</td>
<td>Fax: 309.837.1100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>McHenry County Health Department</th>
<th>McLean County Health Department</th>
<th>Menard County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathy Bennett, Coordinator</td>
<td>Laura Beavers FCM Supervisor</td>
<td>Kathy Fleck, R.N.</td>
</tr>
<tr>
<td>2200 N. Seminary Ave., Annex A</td>
<td>Kim Anderson WIC</td>
<td>927 N. 5th Street</td>
</tr>
<tr>
<td>Woodstock, IL 60098</td>
<td>McLean County Health Dept</td>
<td>Petersburg, IL 62675-1124</td>
</tr>
<tr>
<td>Phone: 815.334.4510 x 4518</td>
<td>200 W. Front</td>
<td>Phone: 217.632.2810</td>
</tr>
<tr>
<td>Fax: 815.338.7661</td>
<td>Bloomington, IL 61701</td>
<td>Fax: 217.632.7873</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mercer County Health Department</th>
<th>Monroe County Health Department</th>
<th>Montgomery County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wendy Bigham, R.N.</td>
<td>Kate Brandt Mueller, RN</td>
<td>Carolyn DeWerff, R.N.</td>
</tr>
<tr>
<td>305 N.W. 7th Street</td>
<td>901 Illinois Ave.</td>
<td>11191 Illinois Route 185</td>
</tr>
<tr>
<td>Aledo, IL 61231</td>
<td>Waterloo, IL 62298</td>
<td>Hillsboro, IL 62049</td>
</tr>
<tr>
<td>Phone: 309.582.3759 x4514</td>
<td>618-939-3871 ext 20</td>
<td>Phone : 217.532.2001 x 150</td>
</tr>
<tr>
<td>Fax: 309.582.3793</td>
<td>Fax 618-939-4459</td>
<td>Fax : 217.532.6609</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Morgan County Health Department</th>
<th>Moultrie County Health Department</th>
<th>Oak Park Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Gray, R.N.</td>
<td>Jennie Harchious, R.N./Angela Hogan, R.N., M.S.P.H.</td>
<td>See Cook County</td>
</tr>
<tr>
<td>345 W. State St., Norris Hospital</td>
<td>2 West Adams</td>
<td></td>
</tr>
<tr>
<td>Jacksonville, IL 62650</td>
<td>Sullivan, IL 61951</td>
<td></td>
</tr>
<tr>
<td>Phone: 217.245.5111</td>
<td>Phone: 217.728.4114</td>
<td></td>
</tr>
<tr>
<td>Fax: 217.243.4773</td>
<td>Fax: 217.728.2650</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Macoupin County Health Department</th>
<th>Madison County Health Dept.</th>
<th>Marion County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Hazzard, R.N.</td>
<td>Becci Weirich, R.N.</td>
<td>Dena Kemp., R.N.</td>
</tr>
<tr>
<td>805 N. Broad St.</td>
<td>101 E. Edwardsville</td>
<td>1013 N. Poplar St</td>
</tr>
<tr>
<td>Carlinville, IL 62626</td>
<td>Wood River, IL 62095</td>
<td>Centralia, IL 62801</td>
</tr>
<tr>
<td>Phone: 217.854.3223, x 234</td>
<td>Phone: 618.296.6062</td>
<td>Phone: 618-532-6518 x 2227</td>
</tr>
<tr>
<td>Fax: 217.854.3225</td>
<td>Fax: 618.251.9482</td>
<td>Fax: 618.532.6543</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marshall County Health Department</th>
<th>Mason County Health Department</th>
<th>McDonough County Health Dept.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathleen King, R.N.</td>
<td>Theresa Sexton, R.N., Family Case Mgt.</td>
<td>Lynn VanPelt, R.N.</td>
</tr>
<tr>
<td>319 Sixth Street. P. O. Box 156</td>
<td>P. O. Box 557, Route 136 East</td>
<td>505 E. Jackson Street</td>
</tr>
<tr>
<td>Lacon, IL 61604</td>
<td>Havana, IL 62644</td>
<td>Macomb, IL 61455</td>
</tr>
<tr>
<td>Phone: 309.246-8074</td>
<td>Phone: 309.543.2201 x 244</td>
<td>Phone: 309.837.9951</td>
</tr>
<tr>
<td>Fax: 309.246-3787</td>
<td>Fax: 309.543.2063</td>
<td>Fax: 309.837.1100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>McHenry County Health Department</th>
<th>McLean County Health Department</th>
<th>Menard County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathy Bennett, Coordinator</td>
<td>Laura Beavers FCM Supervisor</td>
<td>Kathy Fleck, R.N.</td>
</tr>
<tr>
<td>2200 N. Seminary Ave., Annex A</td>
<td>Kim Anderson WIC</td>
<td>927 N. 5th Street</td>
</tr>
<tr>
<td>Woodstock, IL 60098</td>
<td>McLean County Health Dept</td>
<td>Petersburg, IL 62675-1124</td>
</tr>
<tr>
<td>Phone: 815.334.4510 x 4518</td>
<td>200 W. Front</td>
<td>Phone: 217.632.2810</td>
</tr>
<tr>
<td>Fax: 815.338.7661</td>
<td>Bloomington, IL 61701</td>
<td>Fax: 217.632.7873</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mercer County Health Department</th>
<th>Monroe County Health Department</th>
<th>Montgomery County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wendy Bigham, R.N.</td>
<td>Kate Brandt Mueller, RN</td>
<td>Carolyn DeWerff, R.N.</td>
</tr>
<tr>
<td>305 N.W. 7th Street</td>
<td>901 Illinois Ave.</td>
<td>11191 Illinois Route 185</td>
</tr>
<tr>
<td>Aledo, IL 61231</td>
<td>Waterloo, IL 62298</td>
<td>Hillsboro, IL 62049</td>
</tr>
<tr>
<td>Phone: 309.582.3759 x4514</td>
<td>618-939-3871 ext 20</td>
<td>Phone : 217.532.2001 x 150</td>
</tr>
<tr>
<td>Fax: 309.582.3793</td>
<td>Fax 618-939-4459</td>
<td>Fax : 217.532.6609</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Morgan County Health Department</th>
<th>Moultrie County Health Department</th>
<th>Oak Park Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Gray, R.N.</td>
<td>Jennie Harchious, R.N./Angela Hogan, R.N., M.S.P.H.</td>
<td>See Cook County</td>
</tr>
<tr>
<td>345 W. State St., Norris Hospital</td>
<td>2 West Adams</td>
<td></td>
</tr>
<tr>
<td>Jacksonville, IL 62650</td>
<td>Sullivan, IL 61951</td>
<td></td>
</tr>
<tr>
<td>Phone: 217.245.5111</td>
<td>Phone: 217.728.4114</td>
<td></td>
</tr>
<tr>
<td>Fax: 217.243.4773</td>
<td>Fax: 217.728.2650</td>
<td></td>
</tr>
<tr>
<td>Ogle County Health Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linda Jackson, R.N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>907 W. Pines Rd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon, Illinois 61061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone: 815.732.7330 x 315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: 815.732.7458</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peoria City/County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeanne Welte, R.N.</td>
</tr>
<tr>
<td>2116 N. Sheridan Road</td>
</tr>
<tr>
<td>Peoria, IL 61604</td>
</tr>
<tr>
<td>Phone: 309.679.6095</td>
</tr>
<tr>
<td>Fax: 309.679.6650</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perry County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betty Ashauer, R.N.</td>
</tr>
<tr>
<td>P. O. Box 49, 907 S. Main Street</td>
</tr>
<tr>
<td>Pinckneyville, IL 62274</td>
</tr>
<tr>
<td>Phone: 618.357.9631 x105</td>
</tr>
<tr>
<td>Fax: 618.357-3190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pike County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth Fencik, R.N., MCH Coord.</td>
</tr>
<tr>
<td>113 E. Jefferson St.</td>
</tr>
<tr>
<td>Pittsfield, IL 62363-1420</td>
</tr>
<tr>
<td>Phone: 217.285.4407 x 109</td>
</tr>
<tr>
<td>Fax: 217.285.4639</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randolph County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim Reeder, R.N.</td>
</tr>
<tr>
<td>2515 State St.</td>
</tr>
<tr>
<td>Chester, IL 62233-1149</td>
</tr>
<tr>
<td>Phone: 618-826-5007 x 122</td>
</tr>
<tr>
<td>Fax: 618.826.5223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Putnam County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine Caldwell, R.N.</td>
</tr>
<tr>
<td>220 E. High St., Suite 102</td>
</tr>
<tr>
<td>Hennipin, IL 61327</td>
</tr>
<tr>
<td>Phone: 815-925-7001</td>
</tr>
<tr>
<td>Fax: 815.925.7326</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rock Island County Health Dept.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franki Cunningham, R.N., B.S.N.</td>
</tr>
<tr>
<td>Director of Family Health</td>
</tr>
<tr>
<td>2112 Twenty-Fifth St.</td>
</tr>
<tr>
<td>Rock Island, IL 61201</td>
</tr>
<tr>
<td>Phone: 309.558.2850</td>
</tr>
<tr>
<td>Fax: 309-794-7091</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>St. Clair County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karoline Stock, R.N., Case Management Supervisor</td>
</tr>
<tr>
<td>#19 Public Square, Suite 150</td>
</tr>
<tr>
<td>Belleville, IL 62220-1624</td>
</tr>
<tr>
<td>Phone : 618.233.6170 x 4483</td>
</tr>
<tr>
<td>Fax : 618.236.0821</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sangamon County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacy Darland, R.N.</td>
</tr>
<tr>
<td>2501 N. Dirksen Parkway</td>
</tr>
<tr>
<td>Springfield, IL 62702</td>
</tr>
<tr>
<td>Phone: 217.535.3100 x3794</td>
</tr>
<tr>
<td>Fax: 217.535.3104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schuyler County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debbie Hammer, R.N.</td>
</tr>
<tr>
<td>P. O. Box 320</td>
</tr>
<tr>
<td>127 S. Liberty</td>
</tr>
<tr>
<td>Rushville, IL 62681</td>
</tr>
<tr>
<td>Phone: 217-322-4373</td>
</tr>
<tr>
<td>Fax: 217.322.2138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scott County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllis Jefferson, R.N.</td>
</tr>
<tr>
<td>113 E. Jefferson Street</td>
</tr>
<tr>
<td>Pittsfield, IL 62363-1420</td>
</tr>
<tr>
<td>Phone: 217-742-8203</td>
</tr>
<tr>
<td>Fax: 217.742-8304</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shelby County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooke Veridine, R.N.</td>
</tr>
<tr>
<td>R.R. 2, Box 54</td>
</tr>
<tr>
<td>1700 W. S. Third</td>
</tr>
<tr>
<td>Shelbyville, IL 62565</td>
</tr>
<tr>
<td>Phone: 217.774.9555</td>
</tr>
<tr>
<td>Fax: 217.774.2355</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Southern 7 Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>(also covers Alexander, Hardin, Johnso, Massac, Pope, Pulaski, Union counties)</td>
</tr>
<tr>
<td>Cheryl Manus, R.N.</td>
</tr>
<tr>
<td>37 Rustic Campus Drive</td>
</tr>
<tr>
<td>Ullin, IL 62992</td>
</tr>
<tr>
<td>Phone: 618.634.2297 x112</td>
</tr>
<tr>
<td>Fax: 618.634.9394</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stark County covered by Henry County</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Skokie Health Department (See Cook County)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stickney Health District (See Cook County)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vermilion County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pam Hull, R.N.</td>
</tr>
<tr>
<td>200 S. College</td>
</tr>
<tr>
<td>Danville, IL 61832</td>
</tr>
<tr>
<td>Phone: 217.431.2662</td>
</tr>
<tr>
<td>Fax: 217.431.7485</td>
</tr>
<tr>
<td>NBS & SIDS cases will be handled by Champaign county for now 5/26/10</td>
</tr>
<tr>
<td>Department</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Wabash County Health Department (also covers Edwards County)</td>
</tr>
<tr>
<td>130 W. Seventh St.</td>
</tr>
<tr>
<td>Mount Carmel, IL 62863</td>
</tr>
<tr>
<td>Phone: 618.263.3873</td>
</tr>
<tr>
<td>Fax: 618.262.4215</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Whiteside County Health Department</th>
<th>Will County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne County Health Department</td>
<td>Pam VanderVinne, R.N.</td>
<td>Sharon Wesel, R.N.</td>
</tr>
<tr>
<td>Pat Weber, R.N., Coordinator Family Case Management</td>
<td>1300 W 2nd Street</td>
<td>323 Quandrangle Dr.</td>
</tr>
<tr>
<td>P. O. Box 645, 405 N. Basin Road</td>
<td>Rock Falls, IL 61071</td>
<td>Bolingbrook, IL 60440</td>
</tr>
<tr>
<td>Fairfield, IL 62837</td>
<td>Phone: 815.626.2230 x 313</td>
<td>Phone: 630.679.7001</td>
</tr>
<tr>
<td>Phone: 618.842.5166</td>
<td>Fax: 815.626.2231</td>
<td>Fax: 630-679-7015</td>
</tr>
<tr>
<td>Fax: 618.842.3305</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Winnebago County Health Department</th>
<th>Woodford County Health Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williamson Covered by Franklin-Williamson</td>
<td>Carol Deutsh-Schmidt/Gen Coord</td>
<td>Linda McKeown, R.N.</td>
</tr>
<tr>
<td>SIDS: Cathie Heilman, MSW/SIDS</td>
<td>SIDS:</td>
<td>109 S. Major</td>
</tr>
<tr>
<td>401 Division St.</td>
<td>Rockford, IL 61104</td>
<td>Eureka, IL 61530</td>
</tr>
<tr>
<td>Phone: 815.720.4319</td>
<td>Phone: 815.720.4320</td>
<td>Phone: 309.467.3064</td>
</tr>
<tr>
<td>Fax: 815.962.4203</td>
<td>Fax: 815.962.4203</td>
<td>Fax: 309.467.5104</td>
</tr>
</tbody>
</table>

November 2010
Appendix F

Illinois Department of Public Health Newborn Screening Laboratory

Tandem Mass Spectrometry

Acylcarnitine/Amino Acid Analytes and Associated Disorders
Tandem Mass Spectrometry
Newborn Screening

Tandem mass spectrometry (MS/MS) analysis detects amino acids and acylcarnitines in dried blood newborn screening samples, and the presence of these analytes may indicate certain amino acid, organic acid and fatty acid oxidation disorders. The following is a summary of the disorders that may be associated with elevations of certain amino acids and acylcarnitines.

Amino acid disorders*
- Phenylketonuria (PKU) or Hyperphenylalaninemia
- Maple syrup urine disease (MSUD)
- Homocystinuria (cystathionine synthase deficiency) or Hypermethioninemia
- Tyrosinemia, type I and possibly type II or III
- 5-oxoprolineuria (glutathione synthetase deficiency)*

Urea cycle disorders*
- Citrullinemia
- Argininosuccinic aciduria (ASA)
- Argininemia*

Fatty acid oxidation disorders*
- Short chain acyl-CoA dehydrogenase deficiency (SCAD)
- Isobutyryl-CoA dehydrogenase deficiency (IBCD)
- Glutaric aciduria, type 2 (GAI) or Multiple acyl-CoA dehydrogenase deficiency (MADD)
- Medium/Short chain L-3-hydroxyacyl-CoA dehydrogenase deficiency (M/SCHAD)*
- Medium chain acyl-CoA dehydrogenase deficiency (MCAD)
- Long chain 3 hydroxyacyl-CoA dehydrogenase def. (LCHAD)
- Trifunctional protein deficiency (TFPD)*
- Very long chain acyl-CoA dehydrogenase deficiency (VLCAD)
- Carnitine palmitoyl transferase deficiency, type 2 (CPTII)*
- Carnitine palmitoyl transferase deficiency, type 1A (CPT1A)*
- Carnitine/acylcarnitine translocase deficiency (CACT)*
- Carnitine uptake defect (CUD)

Organic acid disorders*
- Propionic acidemia (PA)*
- Methylmalonic acidemia (MMA)*
- Malonic aciduria (MA)*
- Multiple carboxylase deficiency (MCD)
- 3-hydroxy 3-methylglutaryl-CoA lyase deficiency (3HMG)
- 3-methylcrotonyl-CoA carboxylase deficiency (3MCC)
- 3-methylglutaconic aciduria (3MGA)
- 2-methylbutyryl-CoA dehydrogenase deficiency (2MBD)
- Isovaleric acidemia (IVA)
- Glutaric acidemia, type 1 (GAI)
- Beta-ketothiolase deficiency (BKT)*

Notes:
*Some forms (genotypes) of these disorders may not be detected by neonatal screening, may not be detected in a newborn dried blood spot, or are extremely rare (1: >250,000).
Primary MS/MS analyte(s) written in **bold type.
MS/MS analytes are measured in micromoles per liter (μM/L).
For substituted carnitines, a notation of (Cx) is used, in which (x) denotes the number of carbons in the fatty acid radical.
Hydroxylation is designated by (-OH), dicarboxylic acids are designated by (-DC), and unsaturation of the fatty acid chain is designated by (:1).